首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
植物油及其衍生物在柴油机上的应用   总被引:4,自引:0,他引:4  
评述了植物油及其衍生物在柴油机上应用的前景和可行性,讨论了目前纯植物油、生物柴油和它们的混合物在柴油机上使用的最新研究成果。比较了植物油及其衍生物和传统柴油的性质以及柴油机燃用这些燃料时的性能和排放特性。  相似文献   

2.
Energy sources are becoming a governmental issue, with cost and stable supply as the main concern. Oxygenated fuels production is cheap, simple and eco-friendly, as a well as can be produced locally, cutting down on transportation fuel costs. Oxygenated fuels are used directly in an engine as a pure fuel, or they can be blended with fossil fuel. The most common fuels that are conceded under oxygenated fuels are ethanol, methanol, butanol Dimethyl Ether (DME), Ethyl tert-butyl ether (ETBE), Methyl tert-butyl ether (MTBE) and biodiesel that have attracted the attention of researchers. Due to the higher heat of vaporization, high octane rating, high flammability temperature, and single boiling point, the oxygenated fuels have a positive impact on the engine performance, combustion, and emissions by allowing the increase of the compression ratio. Oxygenated fuels also have a considerable oxygen content that causes clean combustion. The aim of this paper was to systematically review the impact of compression ratio (CR) on the performance, combustion and emissions of internal combustion engines (ICE) that are operated with oxygenated fuels that could potentially replace petroleum-based fuels or to improve the fuel properties. The higher octane rating of oxygenated fuels can endure higher compression ratios before an engine starts knocking, thus giving an engine the ability to deliver more power efficiently and economically. One of the more significant findings to emerge from this review study was the slight increases or decreases in power when oxygenated fuel was used at the original CR in ICE engines. Also, CO, HC, and NOx emissions decreased while the fuel consumption (FC) increased. However, at higher CR, the engine performance increased and fuel consumption decreased for both SI and CI engines. It was seen the NOx, CO and CO2 emissions of oxygenated fuels decreased with the increasing CR in the SI engine, but the HC increased. Meanwhile, in CI engine, the HC, CO and NOx decreased as the CR increased with biodiesel fuel.  相似文献   

3.
This paper analyzes the emissions of a single‐cylinder diesel engine fueled with biodiesel, using selective catalytic reduction (SCR) and exhaust gas recirculation (EGR) techniques. The aim of this paper is to compare both EGR and SCR techniques, which were studied under different brake powers. Grape seed biodiesel was used as a test fuel. Experiments were performed by both techniques at different loads and rates to find out the performance change in the engine and the change in the emission rates using both the techniques. Then the observations from both the techniques were compared, concluding that both the techniques show a sufficient reduction in NOx. Using the abovementioned techniques, a reduction in hydrocarbon (HC), carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), and smoke was observed. The EGR technique is more suitable for low‐load engine vehicles, as it affects the efficiency of the engine with an increase in the fuel consumption, whereas the SCR technique is suitable for high‐load engines, which do not affect the efficiency of the engine with a decrease in the fuel consumption.  相似文献   

4.
An investigational analysis was performed to assess the effect of diethyl ether (DEE) that acts as an oxygenated additive in Jatropha biodiesel and diesel fuel blends on the performance enhancement and emission reduction of a variable compression ratio (CR) diesel engine. The DEE (10% vol) is added to different concentration levels of Jatropha biodiesel (B5, B10, and B20). The Jatropha biodiesel (JME) is prepared by the transesterification reaction and DEE is prepared through acid distillation of ethanol. The various tests were conducted by varying the loads at 25%, 50%, 75%, and 100% (3, 6, 9, and 12 kg). The DEE was entirely miscible with diesel and Jatropha biodiesel, the addition of DEE increases the cetane and calorific value, kinematic viscosity of the fuel blends compared with neat diesel or Jatropha biodiesel. The results illustrate that at higher loads and CRs, the engine performance parameters such as brake thermal efficiency enhances and reduces the brake-specific fuel consumption for DEE-Jatropha biodiesel-diesel fuel blends. Blend A3 (10% DEE + 20% JME + 70% diesel) demonstrated an overall improvement in the engine performance parameters and emission characteristics compared with A1, A2, and diesel fuel blends. It is concluded that the DEE-JME-diesel fuel blend is a promising source of fuel for diesel engine at maximum load.  相似文献   

5.
《能源学会志》2020,93(3):953-961
There is a high potential for plant oils as alternative fuel for low and medium speed diesel engines, making petroleum-derived fuels likely to be replaced in these types of engines. Vegetable oils have important advantages over both heavy fuel oil (HFO) and marine gas oil (MGO), the fuels currently used in diesel power plants by large two stroke low-speed diesel engines and by medium speed diesel engines, respectively. The emission of certain pollutants and greenhouse gases like SOx, soot and, mainly, CO2 can be reduced by using vegetable oils in these types of engines. This work discusses the potential of vegetable oils as fuel for power plant diesel engines and the problems that can be derived from their use. Current experiences with medium speed diesel engines together with the analysis carried out in this paper indicate that vegetable oils can substitute HFO and MGO, without almost any engine modification.  相似文献   

6.
我国燃料油供需状况分析及替代燃料的研究趋势   总被引:1,自引:0,他引:1  
介绍了我国燃料油市场的供需现状及其形成原因,预测了燃料油市场未来走向。对替代燃料研究的发展趋势进行了简要分析,介绍了国内现有的替代燃料研究以及不同研究项目的特点、利弊。  相似文献   

7.
以野生小球藻生物柴油(Chlorella Biodiesel Fuel,CBF)-柴油作为混合燃料,利用186FA柴油机进行台架试验。在CBF的掺混比例分别为0%,3%,5%(B0,B3,B5)时,对柴油机的动力性、燃料燃用的经济性和燃烧及排放特性进行了比较分析。试验分析表明:柴油机燃用混合燃料时,与燃用纯柴油相比,随着CBF掺混比例的增加,其扭矩和功率略有下降,最大降幅均为4%;柴油机的油耗率和能耗率略有上升,且在高、中负荷时更为明显;柴油机的缸内压力、放热率峰值稍有减小,而压力升高率峰值稍有增大,缸内压力峰值最大降幅为3.4%,放热率峰值最大降幅为12.8%,压力升高率峰值最大增幅为13.7%;柴油机滞燃期缩短了0.5~1.0°CA、燃烧持续期延长了1.0~2.0°CA,缸内压力、压力升高率和放热率峰值的出现时刻均提前了1.0~2.0°CA,燃烧速度加快;HC,CO和碳烟的排放均有所降低,而NOX的排放逐渐增多,全负荷时HC和碳烟排放的最大降幅分别为14.1%和31.7%,NOX排放的最大增幅为9.7%,CO排放的降幅为6%~12%。  相似文献   

8.
Energy security is an important consideration for development of future transport fuels. Among the all gaseous fuels hydrogen or hydroxy (HHO) gas is considered to be one of the clean alternative fuels. Hydrogen is very flammable gas and storing and transporting of hydrogen gas safely is very difficult. Today, vehicles using pure hydrogen as fuel require stations with compressed or liquefied hydrogen stocks at high pressures from hydrogen production centres established with large investments.Different electrode design and different electrolytes have been tested to find the best electrode design and electrolyte for higher amount of HHO production using same electric energy. HHO is used as an additional fuel without storage tanks in the four strokes, 4-cylinder compression ignition engine and two-stroke, one-cylinder spark ignition engine without any structural changes. Later, previously developed commercially available dry cell HHO reactor used as a fuel additive to neat diesel fuel and biodiesel fuel mixtures. HHO gas is used to hydrogenate the compressed natural gas (CNG) and different amounts of HHO-CNG fuel mixtures are used in a pilot injection CI engine. Pure diesel fuel and diesel fuel + biodiesel mixtures with different volumetric flow rates are also used as pilot injection fuel in the test engine. The effects of HHO enrichment on engine performance and emissions in compression-ignition and spark-ignition engines have been examined in detail. It is found from the experiments that plate type reactor with NaOH produced more HHO gas with the same amount of catalyst and electric energy. All experimental results from Gasoline and Diesel Engines show that performance and exhaust emission values have improved with hydroxy gas addition to the fossil fuels except NOx exhaust emissions. The maximum average improvements in terms of performance and emissions of the gasoline and the diesel engine are both graphically and numerically expressed in results and discussions. The maximum average improvements obtained for brake power, brake torque and BSFC values of the gasoline engine were 27%, 32.4% and 16.3%, respectively. Furthermore, maximum improvements in performance data obtained with the use of HHO enriched biodiesel fuel mixture in diesel engine were 8.31% for brake power, 7.1% for brake torque and 10% for BSFC.  相似文献   

9.
This article first gives a brief review of thermal engines designed for terrestrial transportation since the 1900s. We then outline the main developments in the state of the art and knowledge about internal combustion engines, focusing on the increasingly stringent pollution constraints imposed since the 1990s. The general concept of high‐energy performance machines is analyzed from the energy, exergy, and public health point of view and illustrated with typical examples of clean energy production and zero emissions. Whereas the energy analysis revealed high potential of waste heat recovery from both exhaust and cooling system, the exergetic analysis revealed much higher recovery potential from exhaust gases. The exergy content of exhaust gases was observed to be within the range from 10.4% to 20.2% of the fuel energy. The cooling exergy is within the range from 1.2% to 3.4% of the fuel energy. The article concludes with some perspectives for the emergence of an economic model that could be applied to land‐based transport systems in the framework of energy transition by 2030. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Research on and use of biodiesels for engines is growing continuously in the present era. Compression ignition (CI) engine performance for biodiesels of blends B20 from Acid oil, Mahua oil, and Castor oil is experimentally investigated. The engine performance analysis in the form of brake‐specific fuel consumption, brake‐specific energy consumption, brake thermal efficiency (BTE), exhaust gas temperature (EGT), and air fuel ratio are compared with diesel as base fuel. Emission characteristics like CO, CO2, NOx, and opacity are comparatively studied in detail for the considered biodiesels. The entire study is compared with the performance of engine when pure diesel is chosen as fuel. From the complete analysis it was observed that the BTE was higher for Acid oil and Mahua oil among the biodiesels used. And regarding CO emissions, Mahua oil showed lower effect than other biodiesels. Upto 6% increase in EGT of Mahua oil was obtained at no load and for other loads the percent reduced. For all the biodiesels the % enhancement in Co, CO2, and NOx was more than 60% at highest load compared with diesel.  相似文献   

11.
An experimental study is conducted to evaluate the use of JP-8 aviation fuel as a full substitute for diesel fuel in a Ricardo E-6 high-speed naturally-aspirated four-stroke experimental engine having a swirl combustion chamber. The study covers a wide range of engine load and speed operating conditions, comprising measurements of cylinder pressure diagrams, high-pressure fuel pipe pressures, exhaust gas temperatures, fuel consumptions, exhaust smokiness and exhaust gas emissions (nitrogen oxides, unburned hydrocarbons and carbon monoxide). Processing of the measurements provides important performance parameters such as maximum combustion pressure, dynamic injection timing, ignition delay, combustion irregularity and knocking tendency. The differences in the measured performance and exhaust emission parameters are determined for engine operation with JP-8 fuel, against baseline engine operation using diesel fuel. The study shows that the exhaust emission levels are not much different for operation with the two fuels. On the contrary, operation with JP-8 fuel increases combustion pressures, combustion intensity and irregularity. This is caused mainly by high pressure fluctuations present in the fuel injection system due to the different physical properties of JP-8 fuel (compared to diesel fuel), which totally change the injection characteristics. Retardation of the static injection timing is one means of improving this situation, while using the same fuel injection equipment. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
The demand for energy is increasing every year. For a long time, fossil fuels have been used to satiate this energy demand. However, using hydrocarbon-based fossil fuels has led to an enormous rise of carbon dioxide levels in the atmosphere resulting in global warming. It is therefore necessary to look for alternatives to fossil fuels. The research carried out till date have shown biomass and waste-derived fuels as plausible alternatives to fossil fuels. The biomass feedstock includes jatropha oil, Karanja oil, cottonseed oil, and hemp oil among others and wastes include used cooking oil, used engine oil, used tire and used plastics etc. In this study, the authors aim to explore waste lubrication oil as a fuel for the diesel engine. The used lubrication oil was pyrolyzed and diesel-like fuel with 80% conversion efficiency was obtained. A blend of the fuel and diesel in the ratio of 80:20 on volume basis was prepared. Engine experiments at various load conditions was carried out with the blend. As compared to diesel, a 2% increase in thermal efficiency, 6.3%, 16.1% and 13.6% decrease in smoke, CO and HC emissions & 3.2% and 1.8% increase in NOx and CO2 emission were observed at full load with the blend. With an aim to further improve the engine performance and reduce the overall emissions from the engine exhaust, a zero-carbon fuel namely gaseous hydrogen was inducted in the intake manifold. The flow rate of hydrogen was varied from 3 to 12 Litres per minute (LPM). As compared to diesel, at maximum hydrogen flow rate the thermal efficiency increased by 12.2%. HC, CO and smoke emissions decreased by 42.4%, 51.6% and 16.8%, whereas NOx emissions increased by 22%. The study shows that the combination of pyrolyzed waste lubricant and hydrogen were found to be suitable as a fuel for an unmodified diesel engine. Such fuel combination can be used for stationary applications such as power backups.  相似文献   

13.
Renewable energy sources for the gasoline engines alcohols gain importance recently. These renewable energy sources have attracted the attention of researchers as alternative fuel due to their high octane number. In addition, these are also clean energy sources and can be obtained from the biomass alcohols with low carbon like ethanol. In this study, the effect of compression ratio on engine performance and exhaust emissions was examined at stoichiometric air/fuel ratio, full load and minimum advanced timing for the best torque MBT in a single cylinder, four stroke, with variable compression ratio and spark ignition engine.  相似文献   

14.
Air pollution is increasing globally, coupled with the downward trend in oil reserves. It is important to consider recent researches on renewable fuels such as bioethanol, bioturbosine, biodiesel, green-hydrogen (gH2), among others, as viable options to help reduce the impact of the use and consumption of fossil fuels. In this work is analyzed the Greenhouse Gases production (GHG) by combustion of binary and ternary mixtures, in a 5500 W portable engine generator of alternating current; connecting to the generator three electric charges as a dynamic brake. It were measured the decrements in the production of CO, HC and NOx of up to 99%, 93% and 67%, respectively, as well as an increment in CO2 up to 35%; in addition, reduction in uptake fuel of more than 36%. Therefore, the reduction of GHG emissions will improve the quality of air in the cities, at the same time the quality of people's health.  相似文献   

15.
Compared to widening usage of CNG in commercial gasoline engines, insufficient but increasing number of studies have appeared in open literature during last decades while engine characteristics need to be quantified in exact numbers for each specific fuel converted engine. In this study, a dual sequential spark ignition engine (Honda L13A4 i-DSI) is tested separately either with gasoline or CNG at wide open throttle. This specific engine has unique features of dual sequential ignition with variable timing, asymmetrical combustion chamber, and diagonally positioned dual spark-plug. Thus, the engine led some important engine technologies of VTEC and VVT. Tests are performed by varying the engine speed from 1500 rpm to 4000 rpm with an increment of 500 rpm. The engine’s maximum torque speed of 2800 rpm is also tested. For gasoline and CNG fuels, engine performance (brake torque, brake power, brake specific fuel consumption, brake mean effective pressure), emissions (O2, CO2, CO, HC, NOx, and lambda), and the exhaust gas temperature are evaluated. In addition, numerical engine analyses are performed by constructing a 1-D model for the entire test rig and the engine by using Ricardo-Wave software. In the 1-D engine model, same test parameters are analyzed, and same test outputs are calculated. Thus, the test and the 1-D engine model are employed to quantify the effects of gasoline and CNG fuels on the engine performance and emissions for a unique engine. In general, all test and model results show similar and close trends. Results for the tested commercial engine show that CNG operation decreases the brake torque (12.7%), the brake power (12.4%), the brake mean effective pressure (12.8%), the brake specific fuel consumption (16.5%), the CO2 emission (12.1%), the CO emission (89.7%). The HC emission for CNG is much lower than gasoline. The O2 emission for CNG is approximately 55.4% higher than gasoline. The NOx emission for CNG at high speeds is higher than gasoline. The variation percentages are the averages of the considered speed range from 1500 rpm to 4000 rpm.  相似文献   

16.
Hydrogen peroxide (H2O2) is an excellent oxidant carrier that finds its use in combustion and fuel applications. In the present study, H2O2 (30% assay) is used as an emulsifier in waste cooking oil biodiesel blend (B20) and the emissions and performance in a compression ignition engine are assessed. Along with the neat B20, three blends of B20 with 0.5%, 1%, and 1.5% H2O2 concentrations are used. Increasing the concentration of H2O2 beyond 1.5% resulted in vapor lock in the fuel pump leading to a loss in injection pressure. An increase in the exhaust gas temperature was recorded with the increase in H2O2 concentration due to improved fuel properties, like, cetane number, thermal conductivity, and microexplosions of fuel droplets. However, NOx emissions decreased mainly due to the presence of the hydroperoxyl group from H2O2. Analysis of variance was also carried out to assess the statistical significance of H2O2 on the responses and is seen that the maximum impact of H2O2 was positively influencing brake thermal efficiency (BTE), brake-specific fuel consumption (BSFC), hydrocarbon (HC), and NOx. Compared with the B20 blend, H2O2 emulsified fuel with a concentration of 1.5% showed a substantial reduction of 53.7%, 28.6%, 14.2%, and 16.2% in the average emissions of CO, HC, smoke, and NOx, respectively. Similarly, 7.9% and 7.1% improvement in the BTE and BSFC is obtained. However, more studies are required to ascertain the NOx reduction mechanism and address issues of fuel vaporization at higher concentrations of H2O2.  相似文献   

17.
在一台电控共轨发动机上,试验研究了乙醇掺混比例和喷射定时对二甲醚-乙醇混合燃料燃烧及排放的影响。结果表明:随乙醇比例的增加,滞燃期延长,燃烧持续期缩短,最大压力升高率上升。随喷射推迟,滞燃期延长,燃烧相位延后,燃烧持续期在纯二甲醚时延长,而在掺混乙醇时则先延长后缩短,最大压力升高率先下降后上升。掺混乙醇和推迟喷射使预混燃烧比例增加。随喷射推迟,混合燃料的排气温度升高,喷射推迟到上止点后,排气温度随乙醇比例的增加而升高,排气温度高,则废气能量高,增压器增压比大,进气流量大,导致缸内压缩压力升高。在上止点前喷射时,掺混乙醇能使HC和CO排放保持在较低范围的同时,一定程度降低NO_x排放,掺混15%的乙醇较纯二甲醚最大降低约11%NO_x排放。随推迟喷射,NO_x排放降低,最大降幅达52%,在过分推迟燃料喷射时,因热效率低,循环喷射量增加,含15%乙醇混合燃料的NO_x排放会高于纯二甲醚。HC和CO排放随喷射推迟而升高,且升高幅度增大。  相似文献   

18.
The present study investigated the effect of compression ratio (CR) with the use of exhaust gas recirculation (EGR) technology on the performance of combustion characteristics at different CRs and engine loads; the brake thermal efficiency (BTE), specific fuel consumption (SFC), volumetric efficiency (VOL.EFF), exhaust gas temperature, carbon dioxide emission (CO2), hydrocarbons (HC), nitrogen oxides (NOx), and oxygen content (O2). The single-cylinder, four-stroke compression ignition engine was run on a mixture of diesel and biodiesel prepared from Iraqi waste cooking oil at (B0, B10, B20, and B30). A comparison has been achieved for these combustion characteristics at different blends, load, and CRs (14.5, 15.5, and 16.5) at 1500 rpm constant engine speed. The transesterification process is used to produce biodiesel and ASTM standards have been used to determine the physical and chemical properties of biodiesel and compare them to net diesel fuel. The preliminary conducting tests indicated that engine performance and emissions improved with the B20 mixture. Experimental test results showed an increase in BTE when CR increased by 17% and SFC increased by 23%. It also found a higher VOL.EFF by 6% at higher pressure ratios. A continuous decrease in BTE values and an increase in SFC were sustained when the percentage of biodiesel in the mixture was increased. Emissions of carbon dioxide, HC, and NOx increased by 12%, 50%, and 40%, respectively, as CR reached high values. NOx increased with the addition of biodiesel to 35%, which necessitated the use of EGR technology at rates of 5% and 10%. The results indicated that the best results were obtained in the case of running the engine with a mixing ratio of B20 with the addition of 10% EGR, NOx decreased by 47% against a slight increase in other emissions.  相似文献   

19.
This study investigated the engine performance and emissions of a supercharged engine fueled by hydrogen (H2), and three other hydrogen-containing gaseous fuels such as primary fuels, and diesel as pilot fuel in dual-fuel mode. The energy share of primary fuels was about 90% or more, and the rest of the energy was supplied by diesel fuel. The hydrogen-containing fuels tested in this study were 13.7% H2-content producer gas, 20% H2-content producer gas and 56.8% H2-content coke oven gas (COG). Experiments were carried out at a constant pilot injection pressure and pilot quantity for different fuel-air equivalence ratios and at various injection timings. The experimental strategy was to optimize the pilot injection timing to maximize engine power at different fuel-air equivalence ratios without knocking and within the limit of the maximum cylinder pressure. Better thermal efficiency was obtained with the increase in H2 content in the fuels, and neat H2 as a primary fuel produced the highest thermal efficiency. The fuel-air equivalence ratio was decreased with the increase in H2 content in the fuels to avoid knocking. Thus, neat H2-operation produced less maximum power than other fuels, because of much leaner operations. Two-stage combustion was obtained; this is an indicator of maximum power output conditions and a precursor of knocking combustion. The emissions of CO and HC with neat H2-operation were 98-99.9% and NOx about 85-90% less than other fuels.  相似文献   

20.
Vegetable oils have been identified as the promising alternative source to replace fossil based fuel in the compression ignition (CI) engine. It is renewable and possesses characteristics that is similar to that of the diesel. Biodiesel, transesterifiedform of vegetable oil (VO), is now being commercially used in CI engines. However, biodiesel production from VO involves use of alcohols and chemicals which results the need of skilled labor and investment for its production. In view of this, many studies are also being carried out on the direct use of VO in the engine. The direct use of VO oil in engine is as good as that of the diesel. The superior quality of diesel however makes it better performance in engine as compared to the vegetable oil. Preheating and blending of VO are found to be the most common solution to overcome its inferior properties. The use of preheated and blended VO is found to improve the engine overall performance. This paper is focused exclusively on the one-to-one basis of study pertaining to the effect of neat, preheated and blended vegetable oils on diesel engine performance and emission through supplementation of illustrative figures from the various experimental studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号