共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
介绍了具有ns2np1电子构型的金属离子(原子)掺杂玻璃,过渡金属离子掺杂微晶玻璃和半导体量子点等在近红外光通讯波段具有超宽带发光的新型发光材料.具有ns2np1电子构型的铋掺杂玻璃的σem(发射截面)和σem·.FWHM(full width at half maximum)值分别是掺铒光纤放大器的2~3倍和10倍,σem·τ(荧光寿命)的值是掺钛蓝宝石的3倍.过渡金属离子掺杂微晶玻璃结合了玻璃的易加工性和透明晶体具有高效宽带发光的优点.半导体量子点可利用量子尺寸效应,具有可调节红外宽带发光中心波长等特点.上述材料可能用于宽带光纤放大器的增益介质.探讨了其发光机理并展望了今后的研究方向. 相似文献
3.
4.
5.
钐离子掺杂CaO-MgO-SiO2系微晶玻璃的制备及其发光特性 总被引:1,自引:0,他引:1
制备了一种新型的以透辉石为主晶相的钐离子激活发光微晶玻璃,采用X射线衍射仪、扫描电子显微镜和荧光光谱仪研究了热处理温度对微晶玻璃的结构及发光性能的影响.结果表明:钐离子激活发光微晶玻璃在近紫外、蓝光的激发下可以发出红色光,其564,601,648nm和710nm发射峰分别对应于Sm3 的4G5/2→6HJ(J=5/2,7/2,9/2,11/2)跃迁,随着热处理温度的升高和透辉石晶体逐渐析出,光谱的谱线位置没有变化,强度明显增强.同时发现该基质中,当Sm2O3掺杂量超过0.100%(摩尔分数)时出现浓度猝灭现象. 相似文献
6.
铋掺杂铝硅酸盐玻璃的超宽带近红外发光性质 总被引:1,自引:0,他引:1
采用高温熔融法制备了组分为50SiO_2-xAl_2O_3-(50-x)MgO-Bi_2O_3(x=5,10,15,20,摩尔比)的铋掺杂铝硅酸盐玻璃。研究了铋掺杂铝硅酸盐玻璃超宽带近红外发光性质,探讨了玻璃基质的光学碱度对铋离子宽带发光特性的影响。结果表明:在690nm和808nm的激发下,铋掺杂铝硅酸盐玻璃的红外荧光中心分别位于1106nm和1294nm;随光学碱度的增强,铋离子的红外发光强度减弱。并对铋离子超宽带发光的机理进行了探讨,认为其红外发光源于低价的Bi~+和Bi~(2+)。 相似文献
7.
8.
9.
采用传统的高温熔融法制备了80GeO2–20RO (R=Ca, Sr, Ba)掺铋锗酸盐玻璃。研究了铋掺杂锗酸盐玻璃超宽带近红外发光性质,探讨了铋离子掺杂玻璃超宽带发光机理。结果表明:在808 nm激光激发下,铋掺杂锗酸盐玻璃随着碱土金属离子半径增加,中心波长为1300 nm的发射强度逐渐降低;在690 nm激光激发下,铋掺杂锗酸盐玻璃的近红外发射覆盖从900 nm到2000 nm波段但不呈现正态分布,荧光半高宽达428 nm。随着碱土金属离子半径的增加,其近红外发射中心位置逐渐向长波方向移动,推测近红外发光可能源于两种不同形式铋的发光中心。铋掺杂的锗酸盐玻璃具有良好的光学性能,较宽的荧光半高宽,将成为未来超宽带光纤放大器的增益介质。 相似文献
10.
11.
12.
粉煤灰是大宗工业固体废弃物,也是宝贵的矿物资源.对利用粉煤灰制备微晶玻璃进行了综述,阐述了其制备原理、典型的制备方法以及研究进展.着重介绍了利用粉煤灰制备CaO-Al2O3-SiO2系和MgO-Al2O3-SiO2系微晶玻璃、泡沫微晶玻璃和微晶玻璃复合材料的研究进展及应用.利用粉煤灰合成微晶玻璃材料,不仅可以拓宽粉煤灰的综合利用途径,解决其环境污染问题;也可充分利用资源,制备性能优良的绿色建筑材料,具有十分重要的环境、经济和社会效益,但尚有技术瓶颈亟待突破. 相似文献
13.
研究了4种不同Bi_2O_3掺杂量(0.5%,1%,2%和3%,摩尔分数)的23MgO-11CaO-15Al_2O_3-51SiO_2(摩尔比)玻璃的发光特性。测量了吸收光谱、荧光光谱和荧光寿命。通过电子顺磁共振图谱观察了玻璃受γ辐射前后结构的变化,探讨了玻璃颜色变化和近红外发光的机理。结果表明:在500nm激发下,随着Bi_2O_3掺杂量从1%到3%的逐渐增加,发光波长发生红移,荧光半高宽从312nm增加到352 nm;最优的Bi_2O_3掺杂量为1%,玻璃的受激发射截面和荧光寿命的乘积为3.10×10~(-24)cm~2·s;γ辐射后发光强度的增加和玻璃颜色加深的现象说明Bi掺杂玻璃的近红外发光中心可能是低价态的Bi离子或者Bi团簇。 相似文献
14.
15.
16.
17.
综述了关于微晶玻璃的种类、生产制备方法和制造原料的研究进展。其中,重点介绍了以废物固化为目的的微晶玻璃制造技术。以结晶为出发点,重点总结了微晶玻璃晶化过程的研究情况,包括不同工艺的成核机理、成核理论发展和分子动力学模拟研究进展。总结出微晶玻璃技术多样化、复杂化、精细化的发展趋势,并认为未来的基础研究不仅需要关注各种先进表征手段在观测玻璃晶化过程中的应用,更需要将实验手段与数学建模和理论计算等手段相结合。应用方面,介绍了微晶玻璃的4种具有突出价值的性能:透明度、发光性能、热膨胀性能和力学强度,这些性能赋予了其在各种高新技术领域中的巨大应用潜能。 相似文献
19.