首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The weak transition zone between aggregate and cement paste controls many important properties of concrete. A number of studies dealing with interfacial zone are available in the literature for normal concrete and concrete containing silica fume. High-volume fly ash concrete for structural applications was developed at CANMET in the 1980s, but to date there has been no information available for interfacial zone in high-volume fly ash concrete.In this paper, the orientation index and mean size of Ca(OH)2 crystals in the aggregate-paste interfacial zone were determined by the X-ray diffractometer. The bond strength between the aggregate and paste was also investigated. It was found that, at the age of 28 days, there was no obvious transition zone between the aggregate and cement paste incorporating high volumes of fly ash. The higher the paste strength, the higher is the bond strength.  相似文献   

2.
在研究具有水硬性表面层和惰性内核复合结构的深加工处理石英集料对砂浆界面区结构的改进效果,比较深加工处理石英砂浆(MTQS)、普通石英砂浆(MQS)和硬化水泥浆体(HCP)等3种试样强度随养护时间变化的基础上,研究了界面区结构对水泥砂浆强度的影响.结果表明:使用深加工处理石英集料能有效地改进界面区薄弱结构;界面区结构对水泥砂浆的早期强度影响较小,但对后期强度影响较大;改进界面区结构能大幅度提高水泥砂浆的抗压强度和抗折强度.  相似文献   

3.
In the last years many approaches to design SCC have been developed, but it remains a very complex process since it is necessary to manipulate several variables and understand their effects on concrete behaviour (fresh and hardened state). The prediction of concrete or mortar behaviour based on paste properties will be a significant contribution to simplify SCC design. With this purpose, two statistical experimental designs were carried out, one at paste level and the other at mortar level, to mathematically model the influence of mixture parameters on fresh and durability properties. The derived numerical models were used to define an area, labelled by self-compacting zone at paste level (SCZ), where fresh properties of the paste enable the design of SCC mortar. Furthermore, in order to extend this link to durability properties, the effect of including aggregate in cement paste was evaluated by means of the electrical resistivity test.  相似文献   

4.
The interfacial-bonding, interfacial transition zone (ITZ), and porosity are regarded as the key factors affecting hardened concrete properties. The aim of this study was to experimentally improve the bonding between the rubber aggregate and cement paste by different methodologies including water washing, Na(OH) pre-treatment, and both cement paste and mortar pre-coating. All methods were assessed by determining mechanical and dynamic properties, then correlating this with ITZ porosity and interfacial gap void geometry, along with quantification of the fracture energy during micro crack propagation using fractal analysis. The results indicated that pre-coating the rubber by mortar gave the best results in terms of fracture toughness and energy absorption showing good agreement between observations made at both micro and macro scales.  相似文献   

5.
考虑过渡区界面影响的混凝土宏观力学性质研究   总被引:1,自引:0,他引:1  
杜修力  金浏 《工程力学》2012,29(12):72-79
混凝土材料的宏观力学特性及破坏机理由其细观组分来决定,界面过渡区是影响混凝土断裂破坏路径及宏观力学特性的重要因素。认为界面过渡区是区别于远处砂浆基质的一层含较高孔隙率的近场砂浆材料,采用“两步等效法”得到了混凝土细观单元的等效本构关系模型。最后基于细观单元等效化方法分析了在单轴拉伸、单轴压缩及弯拉载荷条件下混凝土试件的破坏过程及宏观力学性质,探讨了界面过渡区对混凝土力学特性的影响,并与随机骨料模型分析结果进行了对比。结果表明:界面相的存在对混凝土的弹性模量、强度及残余强度等力学性质有很大影响,在对混凝土宏观力学特性及细观断裂破坏过程进行研究时不可忽略其影响。  相似文献   

6.
The microstructure of the interfacial transition zone (ITZ) between cement paste and aggregate depends strongly on the nature of the aggregate, specifically its porosity and water absorption. Lightweight aggregates (LWA) with a porous surface layer have been noted to produce a dense ITZ microstructure that is equivalent to that of the bulk cement paste, as opposed to the more porous ITZ regions that typically surround normal weight aggregates. This ITZ microstructure can have a large influence on diffusive transport into a concrete, especially if the individual ITZ regions are percolated (connected) across the three-dimensional microstructure. In this paper, the substitution of LWA sand for a portion of the normal weight sand to provide internal curing (IC) for a mortar is examined with respect to its influence on ITZ percolation and chloride ingress. Experimental measurements of chloride ion penetration depths are combined with computer modeling of the ITZ percolation and random walk diffusion simulations to determine the magnitude of the reduced diffusivity provided in a mortar with IC vs. one with only normal weight sand. In this study, for a mixture of sands that is 31% LWA and 69% normal weight sand by volume, the chloride ion diffusivity is estimated to be reduced by 25% or more, based on the measured penetration depths.  相似文献   

7.
Elevated curing temperature at early ages usually has a negative effect on the late-age strength of concrete. This article aims to study the mechanism of this phenomenon. The results show that elevated curing temperature at early ages has a negative effect on the late-age strength of hardened cement paste, but it has a greater negative effect on the late-age strength of cement mortar. After elevated temperature curing at early ages, the late hydration of cement is hindered, but the late reaction of fly ash is not influenced. Owing to the continuous reaction of fly ash, the late-age pore structure of cement–fly ash paste under elevated curing temperature is finer than that under standard curing temperature, and the late-age strength of cement–fly ash paste under elevated curing temperature is higher. However, the late-age strength of cement–fly ash mortar under elevated curing temperature is lower. Apparently, there are differences between the effects of elevated curing temperature on hardened paste and mortar. It is the deterioration of transition zone between hardened paste and aggregate that makes the negative effect of elevated curing temperature on the mortar (or concrete) be greater than the hardened paste. As the water-to-binder ratio decreases, the negative effect of elevated curing temperature on the transition zone tends to be less.  相似文献   

8.
Prediction of the chloride diffusion coefficient of concrete   总被引:2,自引:0,他引:2  
It has been experimentally verified that the structure of the interfacial transition zone (ITZ) in concrete differs from that of bulk cement paste. As such, concrete should be modeled as a three-phase material at a mesoscopic level. This paper presents a three-phase composite model for predicting the chloride diffusion coefficient of concrete. Taking the inclusion as aggregate and the matrix as cement paste, the composite circle model is established by adding an ITZ layer in between the inclusion and the matrix. Solving the asymmetrical problem analytically, a closed-form solution for the chloride diffusion coefficient of concrete is derived. After verifying this model with experimental results, the effects of the aggregate area fraction, the chloride diffusion coefficient of ITZ, the ITZ thickness, the maximum aggregate diameter and the aggregate gradation on the chloride diffusion coefficient of concrete are evaluated in a quantitative manner. It is found that the chloride diffusion coefficient of concrete decreases with the increase of the aggregate area fraction and the maximum aggregate diameter, but increases with the increase of the chloride diffusion coefficient and thickness of ITZ. It is also found that the aggregate gradation has a significant influence on the chloride diffusion coefficient of concrete.  相似文献   

9.
The influence of mixing on the microstructure of the cement paste/aggregate bond has been investigated. Back-scattered electron microscopy was used in conjunction with quantitative image analysis to examine the microstructure of the interface between limestone aggregate and the cement matrix in a series of mortars. The distribution of porosity and anhydrous material along the paste/aggregate interface was shown to be dependent upon the relative abundance of water at the aggregate surface during mixing. Improvements in the interfacial microstructure were shown to correlate with improvements in strength and fracture properties. The interfacial zones seen in the limestone mortars were compared with a model interfacial system. A new classification system for two types of interfacial regions in mortar is proposed.  相似文献   

10.
The present paper elucidates the influence of aggregate content of the mix on the reliability of rapid chloride permeability test (RCPT) results. For this purpose, test specimens prepared with mixes varying in total aggregate content were subjected to soaking test, RCPT and electrical resistivity measurements, and the results from these tests were compared and conclusions drawn. The RCPT results indicated the plain cement concrete to be relatively more resistant against chloride penetration than the plain cement mortar, whilst the opposite was true according to the 90-day soaking test results. The above trend did not change despite the addition of silica fume (SF) to the concrete and mortar mixes. The lower aggregate content or higher paste content of plain cement mortar and the mortar with SF is shown to mislead the RCPT results. The higher paste content in the above mix promotes the conduction of higher charge as a result of lower electrical resistivity. Thus the results derived from the present investigation emphasize the need to consider the volume fraction of aggregate in the mix with and without SF while interpreting the RCPT results. Furthermore, regardless of the total aggregate and SF content in the mix, the total charge passed (from the RCPT) through the mix decreased exponentially with increasing electrical resistivity. On the other hand, for those mixes containing either SF or a high volume fraction of aggregates the linear correlation between the total charge passed and chloride penetration coefficient (K) was poor. However, for the mix with relatively lower aggregate content and with no SF the charge passed was well correlated linearly with K.  相似文献   

11.
In order to investigate the effect of coarse aggregate content on the chloride ion migration coefficient of concrete, specimens with different coarse aggregate volume fractions and two water/cement (w/c) ratios of mortar matrix were used. The chloride ion migration coefficient of concrete is obtained using the electrochemical technique to accelerate chloride ion migration in cement-based material and the experimental results were plotted as a function of the fine aggregate volume fraction. The results are analyzed comparing experimental results and theoretical models that represent the concretes as three-phase composite materials. The three phases are the mortar matrix, the coarse aggregate, and the interfacial transition zone between the two. The chloride ion migration coefficient is used to assess the dilution, tortuosity, interfacial transition zone (ITZ) and, percolation effects of coarse aggregate in concrete. It appears that the dilution and tortuosity effects are a dominant factor affecting the chloride ion migration coefficient of concrete in the low volume fraction of coarse aggregate. As the volume fraction of coarse aggregate increases to 40 and 20% in concrete of w/c ratio 0.35 and 0.45, respectively, the ITZ with percolation effects are significantly.  相似文献   

12.
This study deals with a proposed mix design method for SCC utilizing different properties of coarse aggregate. The work was conducted in three phases, i.e. paste, mortar and concrete to facilitate the mix design process. Initial investigation on cement paste determined the basis for water cement ratio and superplasticizer dosage for the concrete. For the study on mortar, metakaolin (MK) as pozzolan was used at replacement levels of 5%, 10%, 15%, and 20% by weight of cement. Self compactability of mortars was obtained by adding suitable materials such as mineral admixtures and superplasticizer which provided a sufficient balance between flowability and viscosity of the mix. The optimum MK replacement level for cement was 10% from the viewpoint of workability and strength. Flowability of mortar decreased with the use of metakaolin. Moreover, strength of mortar increased when the optimum replacement level of pozzolan was used. Different fresh concrete tests were adopted. The results obtained for fresh concrete properties showed that flowability of concrete increased with increase flowability of mortar. The mixes which contained coarse aggregate with lower volume, small size, and continuous grading affected positively the fresh properties of SCC. Finally, the mix design method used was successful in producing SCC with different coarse aggregate properties.  相似文献   

13.
考虑不均匀界面时混凝土弹性模量预测   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了考虑不均匀界面时混凝土弹性模量预测的解析法。根据界面层上水泥颗粒的分布特性, 给出了界面层上任一点处的局部水灰比和孔隙率。将不均匀界面层划分成一系列同心球壳单元, 通过反演方法确定了每个球壳单元和水泥石基体的弹性模量。将三相混凝土分解成一系列两相复合子结构, 应用两相复合球模型的正确解导出混凝土弹性模量。通过与文献中的两组实验结果比较验证了本文方法的有效性。数值结果表明, 对于给定的骨料体积分数, 混凝土弹性模量随着最大水泥颗粒直径和水灰比的增大而减小, 但随着最大骨料直径的增大而增大, 骨料级配对混凝土弹性模量也有一定的影响。   相似文献   

14.
Hardened concrete is a three-phase composite consisting of cement paste, aggregate and interface between cement paste and aggregate. The interface in concrete plays a key role on the overall performance of concrete. The interface properties such as deformation, strength, fracture energy, stress intensity and its influence on stiffness and ductility of concrete have been investigated. The effect of composition of cement, surface characteristics of aggregate and type of loading have been studied. The load-deflection response is linear showing that the linear elastic fracture mechanics (LEFM) is applicable to characterize interface. The crack deformation increases with large rough aggregate surfaces. The strength of interface increases with the richness of concrete mix. The interface fracture energy increases as the roughness of the aggregate surface increases. The interface energy under mode II loading increases with the orientation of aggregate surface with the direction of loading. The chemical reaction between smooth aggregate surface and the cement paste seems to improve the interface energy. The ductility of concrete decreases as the surface area of the strong interface increases. The fracture toughness (stress intensity factor) of the interface seems to be very low, compared with hardened cement paste, mortar and concrete.  相似文献   

15.
新型聚合物水泥胶浆界面剂粘结性能及作用机理研究   总被引:1,自引:0,他引:1  
徐方  朱婧  陈建平  周明凯  刘辉 《材料导报》2012,26(10):119-122
采用新型聚合物水泥胶浆作为界面剂以提高新旧混凝土之间的粘结性能,通过拉拔粘结强度与劈裂抗拉粘结强度实验对5种不同类型的聚合物水泥胶浆界面剂的粘结性能进行了测试,并利用扫描电镜(SEM)分析研究了丁苯聚合物水泥胶浆的界面增强机理。实验结果表明,5种聚合物乳液中,丁苯聚合物水泥胶浆具有较好的拉拔粘结性能,当优选m(水泥)∶m(DB-1乳液)=3∶2时,其7d、28d拉拔粘结强度分别达到1.83MPa、2.41MPa,相比水泥净浆空白样分别提高了144%、96%;在劈裂抗拉粘结强度方面,水平方向浇筑时劈裂抗拉粘结强度相对较高,当聚合物水泥胶浆的优选m(水泥)∶m(DB-1乳液)=3∶2,水平浇筑时其28d劈拉粘结强度达到2.96MPa,明显高于不掺界面剂的试样以及掺加其它配比界面剂的混凝土试样;经过微观测试分析,丁苯DB-1聚合物水泥砂浆内部界面过渡区(ITZ)相比空白样明显致密,表明丁苯聚合物的加入有效填充了水泥基材料内部的宏观与微观缺陷,提高了界面过渡区的密实程度。  相似文献   

16.
In the mortar portion of a concrete mix, the water must be more than sufficient to fill the voids between the solid particles of cement and fine aggregate whereas the paste volume must be more than sufficient to fill the voids between the solid particles of fine aggregate so that there will be excess water to form water films coating all the solid particles and excess paste to form paste films coating the fine aggregate particles. Hence, it may be postulated that the water film thickness (WFT) and the paste film thickness (PFT) have major effects on the rheology of mortar. In this study, the combined effects of WFT and PFT on the rheology, cohesiveness and adhesiveness of mortar were investigated by testing mortar samples with varying water, cement and aggregate contents. It was found that whilst the WFT is the single most important factor governing the rheology of mortar, the PFT also has significant effects. Particularly, the PFT has certain interesting effects on the cohesiveness and adhesiveness of mortar, which should be duly considered in mortar design.  相似文献   

17.
混凝土杨氏模量预测的三相复合球模型   总被引:3,自引:1,他引:3       下载免费PDF全文
提出了混凝土杨氏模量预测的三相复合球模型。在细观水平上将混凝土看成是一种由分散相骨料、中间相界面和连续相水泥浆所组成的三相复合材料。应用混凝土细观结构模拟技术, 获得了任一级配骨料的界面体积分数。模拟结果表明, 李氏近似法高估了界面体积分数, 界面体积分数在很大程度上取决于界面厚度、最大骨料直径和骨料级配。引入三相复合球模型, 给出了混凝土杨氏模量的解析解。将解析解与实验结果进行比较, 证实了本文模型的有效性。数值结果也表明, 对于给定的骨料体积分数, 混凝土杨氏模量随着最大骨料直径和界面杨氏模量的增大而增大, 但随着界面厚度的增大而减小, 骨料级配对混凝土杨氏模量也有较大影响。  相似文献   

18.
Autogenous shrinkage is defined as the bulk deformation of a closed, isothermal, cement-based material system, which is not subjected to external forces. It is associated with the hydration process of the cement paste. From the viewpoint of engineering practice, autogenous shrinkage deformations result in an increase of tensile stresses, which may lead to cracking of early-age concrete. Since concrete is a multi-phase composite with different material compositions and microscopic configurations at different scales, autogenous shrinkage does not only depend on the hydration of the cement paste, but also on the mechanical properties of the constituents and of their distribution. In this paper, a stochastic multi-scale model for early-age concrete is presented, which focuses on the prediction of autogenous shrinkage deformations. In this model, concrete is divided into three different levels according to the requirement of separation of scales. These levels are the cement paste, the mortar, and the concrete. A specific representative volume element (RVE) for each scale is described by introducing stochastic parameters. Different scales are linked by means of the asymptotic expansion theory. A set of autogenous shrinkage experiments on the cement paste, the mortar, and the concrete is conducted and used for validation of the developed multi-scale model. Furthermore, the influence of the type and the volume fraction of the aggregate on autogenous shrinkage is studied. Besides, a combined optimum of fine and coarse aggregates is determined. The analysis results show that the proposed model can effectively estimate the autogenous shrinkage deformations of concrete at early-age by taking the influence of the material composition and configuration into consideration.  相似文献   

19.
This study explored the effect of two combinations of silicon and aluminum oxides, nanosilica–nanoboehmite and nanosilica–gibbsite, on the hydration reaction of cement and the porosity of the interfacial transition zone (ITZ). The influence of sols on the cement hydration reaction was investigated using isothermal calorimetry while their effect on the porosity of the aggregate–paste interface was validated using scanning electron microscopy. The nanosilica–nanoboehmite mixtures were found to accelerate the hydration reaction to a higher degree than the individual components, nanosilica and nanoboehmite. Further, the effect was also found to be dependent on the stoichiometry of the mixture of nanoparticles. The nanosilica–gibbsite combinations not only accelerated the reaction but also increased the cumulative heat of hydration. In this case, the enhancement is attributed to the seeding effect of the gibbsite particles, being more prominent at the smaller particle sizes. Lastly, when these materials were applied as nanoporous thin films on the aggregates, all sol mixtures not only helped to decrease the overall porosity but also contributed to refinement of the porosity in the cement paste adjacent to the aggregate. These effects were observed up to 250 μm away from the surface of the aggregate thus not restricted to the typical length of the interfacial transition zone in concrete (40–50 μm).  相似文献   

20.
The objective of this work was to better understand how atomic force microscopy (AFM) and lateral force microscopy (LFM) techniques can be used as tools to understand the nanostructure and microstructure of cement and cement hydration products. AFM and LFM techniques were used on mortar samples to distinguish between CSH, CH, and unhydrated cement particles. The LFM technique appears to be more sensitive to topographic changes than conventional AFM and it can more clearly distinguish between the different phases at high magnification (low scan range). AFM could also be used to calculate the roughness of the interfacial transition zone (ITZ) between aggregate and the cement paste at different ages. The rough surface at the interface of the paste and aggregate is generally interpreted as higher porosity. It was found that a reduction in roughness (i.e., porosity) occurred for samples that were cured for a longer time which are consistent with the explanation of porosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号