首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Stable semantics for disjunctive programs   总被引:1,自引:0,他引:1  
We introduce the stable model semantics fordisjunctive logic programs and deductive databases, which generalizes the stable model semantics, defined earlier for normal (i.e., non-disjunctive) programs. Depending on whether only total (2-valued) or all partial (3-valued) models are used we obtain thedisjunctive stable semantics or thepartial disjunctive stable semantics, respectively. The proposed semantics are shown to have the following properties:
  • ? For normal programs, the disjunctive (respectively, partial disjunctive) stable semantics coincides with thestable (respectively,partial stable) semantics.
  • ? For normal programs, the partial disjunctive stable semantics also coincides with thewell-founded semantics.
  • ? For locally stratified disjunctive programs both (total and partial) disjunctive stable semantics coincide with theperfect model semantics.
  • ? The partial disjunctive stable semantics can be generalized to the class ofall disjunctive logic programs.
  • ? Both (total and partial) disjunctive stable semantics can be naturally extended to a broader class of disjunctive programs that permit the use ofclassical negation.
  • ? After translation of the programP into a suitable autoepistemic theory \( \hat P \) the disjunctive (respectively, partial disjunctive) stable semantics ofP coincides with the autoepistemic (respectively, 3-valued autoepistemic) semantics of \( \hat P \) .
  •   相似文献   

    3.
    In this paper, we study a new semantics of logic programming and deductive databases. Thepossible model semantics is introduced as a declarative semantics of disjunctive logic programs. The possible model semantics is an alternative theoretical framework to the classical minimal model semantics and provides a flexible inference mechanism for inferring negation in disjunctive logic programs. We also present a proof procedure for the possible model semantics and show that the possible model semantics has an advantage from the computational complexity point of view.This is a revised and extended version of the paper [36] which was presented at the Tenth International Conference on Logic Programming, Budapest, 21–25 June 1993.  相似文献   

    4.
    5.
    The purpose of this paper is to expand the syntax and semantics of logic programs and disjunctive databases to allow for the correct representation of incomplete information in the presence of multiple extensions. The language of logic programs with classical negation, epistemic disjunction, and negation by failure is further expanded by new modal operators K and M (where for the set of rulesT and formulaF, KF stands for F is known to be true by a reasoner with a set of premisesT and MF means F may be believed to be true by the same reasoner). Sets of rules in the extended language will be called epistemic specifications. We will define the semantics of epistemic specifications (which expands the semantics of disjunctive databases from) and demonstrate their applicability to formalization of various forms of commonsense reasoning. In particular, we suggest a new formalization of the closed world assumption which seems to better correspond to the assumption's intuitive meaning.  相似文献   

    6.
    Classical negation in logic programs and disjunctive databases   总被引:2,自引:0,他引:2  
    An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negation-as-failure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available. Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter.  相似文献   

    7.
    If we view an ordinary logic program as a set of beliefs of animplicit agent about a world, then acompletely epistemic logical view of logic programming would yield a further extension that allows us to reasonexplicitly about beliefs and non-beliefs of any agents. In particular, such a view will accommodate nested beliefs, introspective reasoning of self-beliefs and meta-reasoning of others’ beliefs. In this paper, we present the logical foundation of such a view by developing acomputational logic ofquantified epistemic notions. The semantics of the logic is an extension of Kripke’spossible-worlds semantics with variable domains to capture theintensional imputation problem in epistemic notions. A syntactical characterization of this semantics is developed to yield a clausal form of the logic. An efficient resolution mechanisation of this form is described. It is achieved by augmenting Konolige’sB-resolution with a semi-set-of-support strategy with linear resolution. Further refinements on a Horn clausal form of the logic with negation as failure are also discussed.  相似文献   

    8.
    This paper addresses complexity issues for important problems arising with disjunctive logic programming. In particular, the complexity of deciding whether a disjunctive logic program is consistent is investigated for a variety of well-known semantics, as well as the complexity of deciding whether a propositional formula is satisfied by all models according to a given semantics. We concentrate on finite propositional disjunctive programs with as well as without integrity constraints, i.e., clauses with empty heads; the problems are located in appropriate slots of the polynomial hierarchy. In particular, we show that the consistency check is 2 p -complete for the disjunctive stable model semantics (in the total as well as partial version), the iterated closed world assumption, and the perfect model semantics, and we show that the inference problem for these semantics is 2 p -complete; analogous results are derived for the answer sets semantics of extended disjunctive logic programs. Besides, we generalize previously derived complexity results for the generalized closed world assumption and other more sophisticated variants of the closed world assumption. Furthermore, we use the close ties between the logic programming framework and other nonmonotonic formalisms to provide new complexity results for disjunctive default theories and disjunctive autoepistemic literal theories.Parts of the results in this paper appeared in form of an abstract in the Proceedings of the Twelfth ACM SIGACT SIGMOD-SIGART Symposium on Principles of Database Systems (PODS-93), pp. 158–167. Other parts appeared in shortened form in the Proceedings of the International Logic Programming Symposium, Vancouver, October 1993 (ILPS-93), pp. 266–278. MIT Press.  相似文献   

    9.
    We investigate the class ofstationary or partial stable models of normal logic programs. This important class of models includes all (total)stable models, and, moreover, thewell-founded model is always its smallest member. Stationary models have several natural fixed-point definitions and can be equivalently obtained as expansions or extensions of suitable autoepistemic or default theories. By taking a particular subclass of this class of models one can obtain different semantics of logic programs, including the stable semantics and the well-founded semantics. Stationary models can be also naturally extended to the class of all disjunctive logic programs. These features of stationary models designate them as an important class of models with applications reaching far beyond the realm of logic programming.Partially supported by the National Science Foundation grant #IRI-9313061.  相似文献   

    10.
    An autoepistemic logic programming language is derived from a subset of a three-valued autoepistemic logic, called 3AEL. Autoepistemic programs generalize several ideas underlying logic programming: stable, supported, and well-founded models, Fitting's semantics, Kunen's semantics, and abductive frameworks can all be captured through simple autoepistemic translations; moreover, SLDNF-resolution and a generate-and-test method for stable semantics are generalized to provide sound and complete proof methods for autoepistemic programs. These methods extend existing proof methods for 3AEL. Thus autoepistemic logic programming, besides contributing to the understanding of 3AEL, can be seen as a unifying framework for the theory of logic programs. It should also be regarded as a first step toward a flexible environment where different forms of inference can be formally integrated.This paper is an extended version of [8]. I am grateful to my advisor, Giorgio Levi, to Paolo Mancarella, who read the first version of the paper, and to the anonymous referees, whose comments led to sensible improvements.  相似文献   

    11.
    Recent research in nonmonotonic logic programming has focused on certain types of program equivalence, which we refer to here as hyperequivalence, that are relevant for program optimization and modular programming. So far, most results concern hyperequivalence relative to the stable-model semantics. However, other semantics for logic programs are also of interest, especially the semantics of supported models which, when properly generalized, is closely related to the autoepistemic logic of Moore. In this paper, we consider a family of hyperequivalence relations for programs based on the semantics of supported and supported minimal models. We characterize these relations in model-theoretic terms. We use the characterizations to derive complexity results concerning testing whether two programs are hyperequivalent relative to supported and supported minimal models.  相似文献   

    12.
    In this paper, we propose a newsemantic framework for disjunctive logic programming by introducingstatic expansions of disjunctive programs. The class of static expansions extends both the classes of stable, well-founded and stationary models of normal programs and the class of minimal models of positive disjunctive programs. Any static expansion of a programP provides the corresponding semantics forP consisting of the set of all sentences logically implied by the expansion. We show that among all static expansions of a disjunctive programP there is always theleast static expansion, which we call thestatic completion ¯P ofP. The static completion¯P can be defined as the least fixed point of a naturalminimal model operator and can be constructed by means of a simpleiterative procedure. The semantics defined by the static completion¯P is called thestatic semantics ofP. It coincides with the set of sentences that are true inall static expansions ofP. For normal programs, it coincides with the well-founded semantics. The class of static expansions represents a semantic framework which differs significantly from the other semantics proposed recently for disjunctive programs and databases. It is also defined for a much broader class of programs.Dedicated to Jack MinkerPartially supported by the National Science Foundation grant # IRI-9313061.  相似文献   

    13.
    We propose a new framework called ACL for concurrent computation based on linear logic. ACL is a kind oflinear logic programming framework, where its operational semantics is described in terms ofproof construction in linear logic. We also give a model-theoretic semantics based onphase semantics, a model of linear logic. Our framework well captures concurrent computation based on asynchronous communication. It will, therefore, provide us with a new insight into other models of asynchronous concurrent computation from alogical point of view. We also expect ACL to become a formal framework for analysis, synthesis and transformation of concurrent programs by the use of techniques for traditional logic programming. ACL's attractive features for concurrent programming paradigms are also discussed.  相似文献   

    14.
    Current semantics of logic programs normally ignore thesyntactical aspects of the programs. As a result, only the meanings ofsome well-behaved programs can be captured by these semantics. In this paper however, we propose a new semantics of logic programs that can reflectsome of the syntactical behaviours of the programs. The central notion of the semantics is the concept of aneutral clause p ← A which does not affect the behaviour of p in a program. The logic that underlies the semantics is based on anintensional extension of Levesque’s autoepistemicpredicate logic. It differs from existing autoepistemic logics in that it isquantificational andconstructive. We will also compare and contrast our semantics with some well-known semantics. In particular, we will show how to capture the undefined value of a logic program without resorting to a three-valued nonmonotonic formalism. This is achieved by translating an incoherent AE logic program to a program with multiple AE extensions whose intersection can then be used to characterize the undefined value of a logic program.  相似文献   

    15.
    Gelfond and Lifschitz were the first to point out the need for a symmetric negation in logic programming and they also proposed a specific semantics for such negation for logic programs with the stable semantics, which they called 'classical'. Subsequently, several researchers proposed different, often incompatible, forms of symmetric negation for various semantics of logic programs and deductive databases. To the best of our knowledge, however, no systematic study of symmetric negation in non-monotonic reasoning was ever attempted in the past. In this paper we conduct such a systematic study of symmetric negation. We introduce and discuss two natural, yet different, definitions of symmetric negation: one is called strong negation and the other is called explicit negation. For logic programs with the stable semantics, both symmetric negations coincide with Gelfond–Lifschitz' 'classical negation'. We study properties of strong and explicit negation and their mutual relationship as well as their relationship to default negation 'not', and classical negation '¬'. We show how one can use symmetric negation to provide natural solutions to various knowledge representation problems, such as theory and interpretation update, and belief revision. Rather than to limit our discussion to some narrow class of nonmonotonic theories, such as the class of logic programs with some specific semantics, we conduct our study so that it is applicable to a broad class of non-monotonic formalisms. In order to achieve the desired level of generality, we define the notion of symmetric negation in the knowledge representation framework of AutoEpistemic logic of Beliefs, introduced by Przymusinski.  相似文献   

    16.
    17.
    The abstract interpretation of programs relates the exact semantics of a programming language to a finite approximation of those semantics. In this article, we describe an approach to abstract interpretation that is based in logic and logic programming. Our approach consists of faithfully representing a transition system within logic and then manipulating this initial specification to create a logical approximation of the original specification. The objective is to derive a logical approximation that can be interpreted as a terminating forward-chaining logic program; this ensures that the approximation is finite and that, furthermore, an appropriate logic programming interpreter can implement the derived approximation. We are particularly interested in the specification of the operational semantics of programming languages in ordered logic, a technique we call substructural operational semantics (SSOS). We show that manifestly sound control flow and alias analyses can be derived as logical approximations of the substructural operational semantics of relevant languages.  相似文献   

    18.
    The notion of forgetting, also known as variable elimination, has been investigated extensively in the context of classical logic, but less so in (nonmonotonic) logic programming and nonmonotonic reasoning. The few approaches that exist are based on syntactic modifications of a program at hand. In this paper, we establish a declarative theory of forgetting for disjunctive logic programs under answer set semantics that is fully based on semantic grounds. The suitability of this theory is justified by a number of desirable properties. In particular, one of our results shows that our notion of forgetting can be entirely captured by classical forgetting. We present several algorithms for computing a representation of the result of forgetting, and provide a characterization of the computational complexity of reasoning from a logic program under forgetting. As applications of our approach, we present a fairly general framework for resolving conflicts in inconsistent knowledge bases that are represented by disjunctive logic programs, and we show how the semantics of inheritance logic programs and update logic programs from the literature can be characterized through forgetting. The basic idea of the conflict resolution framework is to weaken the preferences of each agent by forgetting certain knowledge that causes inconsistency. In particular, we show how to use the notion of forgetting to provide an elegant solution for preference elicitation in disjunctive logic programming.  相似文献   

    19.
    Abstract

    In the past we developed a semantics for a restricted annotated logic language for inheritance reasoning. Here we generalize it to annotated Horn logic programs. We first provide a formal account of the language, describe its semantics, and provide an interpreter written in Prolog for it. We then investigate its relationship to Belnap's 4-valued logic, Gelfond and Lifschitz's semantics for logic programs with negation, Brewka's prioritized default logics and other annotated logics due to Kifer et al.  相似文献   

    20.
    Over the years, the stable-model semantics has gained a position of the correct (two-valued) interpretation of default negation in programs. However, for programs with aggregates (constraints), the stable-model semantics, in its broadly accepted generalization stemming from the work by Pearce, Ferraris and Lifschitz, has a competitor: the semantics proposed by Faber, Leone and Pfeifer, which seems to be essentially different. Our goal is to explain the relationship between the two semantics. Pearce, Ferraris and Lifschitz's extension of the stable-model semantics is best viewed in the setting of arbitrary propositional theories. We propose here an extension of the Faber–Leone–Pfeifer semantics, or FLP semantics, for short, to the full propositional language, which reveals both common threads and differences between the FLP and stable-model semantics. We use our characterizations of FLP-stable models to derive corresponding results on strong equivalence and on normal forms of theories under the FLP semantics. We apply a similar approach to define supported models for arbitrary propositional theories, and to study their properties.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号