首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
综述了制约锂硫电池循环性能的因素和正极、负极、电解质对锂硫电池循环性能改善的影响。介绍了制约锂硫电池循环性能的主要因素:不可逆硫化锂的形成、硫正极多孔结构的失效和电解液组分与锂负极的副反应。分别介绍了改善锂硫电池循环性能的途径:合适的黏合剂、碳材料、正极制备工艺,锂负极保护技术,合理组分的电解质,电池结构与设计。并在此基础上对今后的发展趋势进行了展望。  相似文献   

2.
彭娜  翟鹏飞  王景涛  王俊晓  刘咏 《化工学报》2020,71(5):2389-2400
锂硫电池具有较高的理论能量密度,被认为是最有发展潜力的下一代高能量密度储能器件之一。然而多硫化物穿过隔膜形成的穿梭效应导致电池容量衰减过快、使用寿命降低,严重阻碍了锂硫电池商业化。以层状氧化石墨烯为模板,采用氧化还原法合成了二氧化锰纳米片,通过低压抽滤获得二氧化锰改性隔膜。利用TEM、XRD、FTIR、SEM、AFM等对该二氧化锰纳米片及改性隔膜的微观结构、形貌等进行表征;采用恒电流充放电、循环伏安法、电化学阻抗法对二氧化锰改性隔膜电化学性能进行测试。研究结果表明,二氧化锰纳米片能均匀覆盖聚丙烯隔膜表面的微孔,通过物理阻隔和催化作用,有效抑制了多硫化物的穿梭,提高了锂硫电池的比容量和循环稳定性。  相似文献   

3.
杨蓉  王黎晴  吕梦妮  邓坤发  燕映霖  任冰  李兰 《化工学报》2016,67(10):4363-4369
利用热解还原将Hummers法制得的氧化石墨烯还原为石墨烯,并采用化学沉淀法将纳米硫成功负载到石墨烯片层上,获得石墨烯/纳米硫(RGO/nano-S)正极复合材料。利用FT-IR、XRD、SEM、TEM和Raman对所制备复合材料的微观结构、形貌等进行表征,采用恒流充放电、循环伏安法和交流阻抗法对复合材料的电化学性能进行研究。研究结果表明,热还原所得石墨烯褶皱的表面形成容纳硫及多硫离子的空间,有助于缓解活性物质溶解和抑制多硫离子迁移;同时,均匀分布的纳米硫能更好地与电解液接触,在石墨烯的导电网络上增大了电化学反应面积,进而改善了该材料作为锂硫电池的实际放比电容量和倍率循环性能。  相似文献   

4.
锂硫电池(LSBs)是一种高理论能量密度(2 600 Wh·kg-1)的储能器件,但反应迟滞以及多硫化锂(LiPS)的穿梭等问题严重限制了LSBs的发展。目前广泛认为,隔膜修饰层的功能化改性可以显著地提升LSBs的电化学特性。因此,主要综述了近年来LSBs隔膜修饰材料的最新进展,分别总结了金属类材料、框架材料、聚合物材料以及预锂化材料等隔膜修饰材料的作用机理及其LSBs实操储能性能,并讨论了理想的隔膜修饰材料,旨在为未来LSBs实际应用材料的开发利用提供有益的参考。  相似文献   

5.
任丽  成国祥  朱嫦娥  王立新 《精细化工》2005,22(2):88-90,141
以聚吡咯 /二氧化硅 (炭黑 )〔PPy/SiO2 (C)〕复合材料作正极 ,组装成锂 /聚吡咯二次电池。探讨了不同掺杂材料、充放电电流对该电池性能的影响。结果表明 ,复合材料电导率越高、充放电电流越小 ,电池容量越高 ,循环性能越好 ;其中PPy/APS SiO2 电导率最高为 3 3 3S/cm ,当充放电电流为 0 1mA时 ,电极最大放电比容量达到41 89mA·h/g ,经 3 0个充放电循环后 ,充放电效率仍为 98 2 %。通过元素分析和SEM研究了经充、放电后正极材料的组成和形态结构的变化 ,验证了锂 /聚吡咯二次电池的工作原理 ,是靠阴离子掺杂和脱掺杂进行的  相似文献   

6.
聚吡咯/凹凸棒石纳米复合材料的制备及导电性能   总被引:2,自引:1,他引:2  
以三氯化铁(FeCl_3)为氧化剂,十二烷基磺酸钠(sodium dodecylsulfonate,DSNa)为掺杂剂,使吡咯单体(pyrrole,Py)在凹凸棒石(attapulgite,ATP)的表面发生原位聚合反应,制备出聚吡咯/凹凸棒石(polypyrrole/attapulgite,PPy/ATP)纳米导电复合材料.研究了毗咯用量、聚合温度、聚合时间、FeCl_3用量以及DSNa用量对纳米导电复合材料体积电阻率的影响,确定了制备纳米导电复合材料的工艺条件.通过X射线衍射、热重-差热分析、Fourier红外光谱、Raman光谱和透射电子显微镜对纳米复合材料进行表征,结果表明:当吡咯用量(以ATP的质量计)为30%,FeCl_3与Py的摩尔比为2.3,DSNa的浓度为0.02g/mL时,20℃反应3h得到的PPy/ATP复合材料的体积电阻率可达7Ω·cm,聚吡咯以非晶态形式存在于凹凸棒石表面,两者之间的作用为物理作用.  相似文献   

7.
8.
锂二氧化碳电池存在过电位大、循环寿命低等问题。以六水合三氯化铁为氧化剂、甲基橙为模板,采用模板法并经高温碳化制备了大孔径氮掺杂聚吡咯碳纳米管(NPPy-CNTs)。SEM和TEM分析结果表明,制备的聚吡咯碳纳米管具有较大的管径,能够为放电产物的均匀沉积提供场所。EDS分析结果表明,氮元素的掺杂能够在聚吡咯碳纳米管表面引入缺陷,增加活性位点,提高催化性能。与商业CNTs负极相比,NPPy-CNTs作为锂二氧化碳电池阴极催化剂表现出良好的放电比容量、循环性能和低过电位。  相似文献   

9.
文章综述了锂硫电池有机液态、凝胶聚合物和全固态电解质的研究进展;阐述了锂硫电池电解质现阶段研究工作中存在的问题,并展望了锂硫电池电解质未来的研究方向。  相似文献   

10.
本文设计合成了一种类沸石咪唑酯骨架衍生二维碳纳米片,并将其作为锂硫电池正极材料,测试电化学性能。产物采用扫描电子显微镜(SEM)、X射线衍射(XRD)、N_2等温吸附脱附曲线、以及热重分析(TGA)进行表征。电化学测试结果表明,当制得二维碳纳米片包覆适量钴纳米颗粒,实测的锂硫电池的性能最佳,在0.5 C倍率下首圈放电比容量为1170 mAh·g~(-1),循环200圈后,比容量仍然有503.8 mAh·g~(-1)。因此,用该方法制备的二维硫/碳复合材料对于锂硫电池正极材料的研究具有重要意义。  相似文献   

11.
多硫化物沉淀反应造成电极活性比表面积大量减少,是锂硫电池放电性能降低的主要原因。采用形核-生长沉淀模型描述锂硫电池沉淀过程。同时,采用误差函数erf(x)修正锂硫电池活性比表面积减少对电池放电阶段性能的影响。在实验数据与计算结果相吻合的前提条件下,进一步计算结果表明:多硫化物Li2S2和Li2S较高的生长速率可以提高放电电压平台,而增加S2-的形核和生长速率均有利于提高锂硫电池的放电容量。  相似文献   

12.
以氧化石墨为原料,制备膨胀石墨,在超声波的作用下,膨胀石墨的片层结构发生剥离得到纳米石墨微片,对纳米石墨微片进行化学镀银,制备镀银纳米石墨微片,然后采用原位聚合法制备了聚吡咯/镀银纳米石墨微片复合材料。结果表明,纳米石墨微片的厚度为30~90nm,直径为1~20μm,具有相当大的径厚比(平均为200),该结构对纳米石墨微片在聚合物基体中形成导电网络极为有利;镀银纳米石墨微片的厚度为200~250nm,被聚吡咯完全包覆,并以纳米级尺寸均匀分散在聚吡咯基体中;聚吡咯/镀银纳米石墨微片复合材料的耐热性能和导电性能较纯聚吡咯均有所提高。  相似文献   

13.
锂硫电池因具有优异的理论容量、能量密度和可持续发展特性而受到越来越广泛的关注。决定锂硫电池性能的最主要因素之一是其正极材料。本文分别通过自组装法和模板法,制备了两种V2O5纳米球,并在制备过程中添加了碳纳米管。以所得到的材料作为正极改性材料,组装了扣式锂硫电池。通过对所制备材料的结构以及电化学性能研究,并与商用V2O5进行对比,发现V2O5纳米球具有良好电化学性能,其电池性能显著优于商用V2O5。这可归因于所合成的V2O5纳米球一方面具有较高的比表面积,有利于活性物种硫的负载,另一方面表面连接有碳纳米管,有利于提高电子传输性能。基于自组装法(1号样品)和模板法(2号样品)所得V2O5纳米球的锂硫电池,在0.1C的倍率下首次充放电比容量分别可达到1049mAh/g和1035mAh/g;经过200次循环后,其放电比容量分别为702...  相似文献   

14.
目的:制备高性能的锂硫电池正极材料。方法:通过碳化表面包覆聚合物的磷钨酸铵微球,制备碳包覆的氧化钨,在其表面负载稀土氧化物,并与单质硫复合,制备硫正极材料。采用X射线衍射、扫描电镜、透射电镜对制备的材料进行表征,采用恒电流充放电方式测试材料的电化学性能。结果:在0.1C的倍率下,硫电极首次放电容量为1 263.7 mAh/g S,循环100次后的放电容量仍然保持有840.6 mAh/g S,表现出较高的放电比容量和良好的循环稳定性。结论:负载稀土氧化物的策略可以有效提升硫电极的电化学性能。  相似文献   

15.
锂硫电池具有较高的理论比容量(1 675 mAh/g)和能量密度(2 600 Wh/kg)优势,并且用于该电池的活性物质单质硫廉价、环境友好,被认为是目前最具发展潜力的新一代高能量密度的电化学储能体系之一。隔膜作为锂硫电池的关键材料之一,其性能优劣将会直接影响锂硫电池的性能。本文主要综述了锂硫电池隔膜的种类、改性方法等方面的研究进展,建议开发新的高品质锂硫电池隔膜材料,最终使其电化学性能得以提高。  相似文献   

16.
世界能源短缺危机日益严重,发展可再生能源成为必然趋势,而储能系统的研究则成为其中的关键.另外,锂离子电池在电子设备中有着重要的作用,但是其较低的理论比容量,使之难以满足大型电子设备的需求.锂硫电池具有数倍于锂离子电池的理论比能量密度(2600 Wh·kg-1)和理论比容量(1675 mAh·g-1),而且单质硫储量丰富...  相似文献   

17.
金玮 《化工进展》2022,41(8):4386-4396
锂硫电池具有较高的能量密度,是有发展前景的能量存储体系之一。但“穿梭效应”严重制约了锂硫电池的实际应用,为解决该问题,本文通过简单的一步热解法合成了孔径均匀的微孔碳材料,探究了微孔碳材料修饰隔膜后对锂硫电池性能的影响。结果表明,制备的微孔碳材料孔径集中在0.56nm左右,修饰隔膜后不仅能够有效抑制“穿梭效应”的产生,还有利于加快锂离子的传输,确保正极一侧溶解的多硫化物的再次利用。在0.1C的电流密度下,采用微孔碳材料修饰隔膜的电池首次放电比容量为1359mAh/g,循环100次之后容量能保持在966mAh/g,而修饰之前的传统聚丙烯隔膜,循环100次之后的比容量仅为409mAh/g;在1C的电流密度下循环500圈后,采用微孔碳材料修饰隔膜的电池容量保持率为88%,表现出优异的循环稳定性。  相似文献   

18.
随着可持续能源的发展和电子设备及电动汽车对储能设备性能要求的不断提高,高能量密度的锂硫电池体系受到了广泛关注。当前锂硫电池仍然面临单质硫和其放电产物的电子绝缘性、多硫化物的“穿梭效应”和循环过程中体积形貌的变化等科学与技术问题,阻碍其实际应用。针对锂硫电池的上述瓶颈,设计多功能粘合剂有望提升活性材料的利用效率及循环寿命。本文在近年来研究的基础上综述了锂硫电池中粘合剂的研究进展,具有包括面向抑制副反应的粘合剂、面向稳定电极片的多维度粘结的粘合剂和面向低界面电阻的粘合剂,并展望了锂硫电池多功能粘合剂面临的科学挑战和未来发展的机遇。  相似文献   

19.
锂硫电池以其高理论比容量、环境友好和低成本等优点成为理想的下一代高能量密度储能装置。但活性材料的绝缘特性、多硫化物的穿梭效应和硫物种缓慢的动力学转化过程,导致电池性能持续衰减,是目前阻碍锂硫电池商业化发展的关键。利用催化材料加速硫物种转化,研究催化氧化还原动力学,从而实现高性能锂硫电池的开发、认知硫物种微观转化机制,是近年来受到广泛关注的研究热点。本综述从理解多硫化物产生、转化和硫化锂沉积等角度入手,讨论了锂硫化学中的催化转化特点,综述了近年来锂硫电池催化材料的研究进展,评述了催化剂的设计策略与评价方法,可为高活性锂硫电池催化剂材料提供一定的借鉴。  相似文献   

20.
锂硫电池因其具有较高的理论比容量和高能量密度被誉为下一代动力电池的最佳候选之一。引起研究者们的广泛关注,成为新型锂电池研究热点。隔膜作为电池的重要组成部分,起到解决多硫化锂穿梭效应和抑制锂枝晶的作用,是提升电池各方面性能的关键。商业膜因其具有良好的机械性能和适用于连续生产以及较低的成本,目前现阶段对隔膜的研究主要集中在对商业隔膜Celgard系列的改性方面。本文主要从改性隔膜涂层的种类和作用机理方面综述了锂硫电池隔膜改性的最新研究现状。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号