首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
MgO addition to 3 mol% Y2O3–ZrO2 resulted in enhanced densification at 1350°C by a liquid-phase sintering mechanism. This liquid phase resulted from reaction of MgO with trace impurities of CaO and SiO2 in the starting powder. The bimodal grain structure thus obtained was characterized by large cubic ZrO2 grains with tetragonal ZrO2 precipitates, which were surrounded by either small tetragonal grains or monoclinic grains, depending on the heat-treatment schedule.  相似文献   

2.
High-resolution neutron powder diffraction was used to study the residual stresses in Al2O3-ZrO2 (12 mol% CeO2) ceramic composites containing 10, 20, and 40 vol% ZrO2 (CeO2). The diffraction data were analyzed using the Rietveld structure refinement technique. The analysis shows that for all samples, the CeO2-stabilized tetragonal ZrO2 particles are in tension and the Al2O3 matrix is in compression. For both the ZrO2 particles and the Al2O3 matrix, the average lattice strains are anisotropic and increase approximately linearly with a decrease in the corresponding phase content. It is shown that these features can be qualitatively understood by taking into consideration the thermal expansion mismatch between the ZrO2 and Al2O3 grains. Also, for all composite samples, the diffraction peaks are broader than the instrumental resolution, indicating that the strains in these samples are inhomogeneous. From an analysis of the refined peak shape parameters, the average root-meansquare strain, which describes the distribution of the inhomogeneous strain field, was determined. Finally, the average residual stresses were evaluated from the experimentally determined average lattice strains and compared with recent results of X-ray measurements on similar composites.  相似文献   

3.
Based on experimental and modeling studies, the rate of increase in the martensite start temperature M s for the tetragonal-to-monoclinic transformation with increase in zirconia grain size is found to rise with decrease in ZrO2 content in the zirconia-toughened alumina ZTA system. The observed grain size dependence of M s can be related to the thermal expansion mismatch tensile (internal) stresses which increase with decrease in zirconia content. The result is that finer zirconia grain sizes are required to retain the tetragonal phase as less zirconia is incorporated into the alumina, in agreement with the experimental observations. At the same time, both the predicted and observed applied stress required to induce the transformation are reduced with increase in the ZrO2 grain size. In addition, the transformation-toughening contribution at temperature T increases with increase in the M s temperature brought about by the increase in the ZrO2 grain size, when T > M s. In alumina containing 20 vol% ZrO2 (12 mol% CeO2), a toughness of ∼10 MPa. √m can be achieved for a ZrO2 grain size of ∼2 μm ( M s∼ 225 K). However, at a grain size of ∼2 μm, the alumina–40 vol% ZrO2 (12 mol% CeO2) has a toughness of only 8.5 MPa. √m ( M s∼ 150 K) but reaches 12.3 MPa. ∼m ( M s∼ 260 K) at a grain size of ∼3 μm. These findings show that composition (and matrix properties) play critical roles in determining the ZrO2 grain size to optimize the transformation toughening in ZrO2-toughened ceramics.  相似文献   

4.
A wet-chemical approach is applied to derive fine powders with compositions 11 mol% CeO2-ZrO2, 1 mol% YO1.5-10 mol% CeO2-ZrO2, 12 mol% CeO2-ZrO2, and 2 mol% YO1.5-10 mol% CeO2-ZrO2 by the coprecipitation method. The characteristics of the as-derived powders are evaluated through thermal analysis and electron microscopy. The sintering behavior of the calcined powders is carried out at 1400° and 1500°C for 1 to 10 h. Sintered density higher than 98% of theoretical is achieved for sintering at 1400°C for several hours. The as-sintered density dependence on the sintering condition is related to the extent of tetragonal-to-monoclinic phase transformation as well as the associated microcracks. Partial substitution by Y2O3 in CeO2-ZrO2 results in reduced grain size and tends to stabilize the tetragonal structure. Y2O3 is more effective than CeO2 with respect to the grain size refinement and tetragonal stability. In addition, Y2O3 substitution in CeO2-ZrO2 increases the hardness, while it decreases the fracture toughness.  相似文献   

5.
Aqueous processing of Al2O3─ZrO2 (123 mol% CeO2) composites, combined with sintering conditions, was used to control the microstructure and its influence on the martensitic transformation temperature of t -ZrO2 and the transformation-toughening contribution at room temperature. The resultant ZrO2 grain sizes in the dense composites were related to the transformation-toughening behavior of t -ZrO2. The data show that (1) the best processing conditions exist when the electrophoretic mobilities of the two solids are positive, adequately high to ensure colloidal stability, efficient packing,and uniform ZrO2 distribution but differ greatly in magnitude, (2) the colloidal stability of ZrO2 controls the overall stability and the rheological and processing behavior of this mixture, (3) the grain size distribution in dense pieces sintered for 1 h at 1500°C is comparable to the particle size distribution of the powders, (4) the martensite start temperature for the tetragonal to-monoclinic transformation in Al2O3 containing 20 and 40 vol% ZrO2 increases and can approach 0°C with increasing average ZrO2 grain size, and as a result, (5) the fracture toughness values at room temperature are raised from 4–5 MPa.m1/2 to 9–12 MPa.m1/2 for these two compositions.  相似文献   

6.
The detrimental aging phenomenon observed in ZrO2-Y2O3 materials, which causes tetragonal ZrO2 to transform to its monoclinic structure at temperatures between 150 and 400°C, was investigated with respect to the gaseous aging environment and the Y2O3 and SiO2 content of the material. It is shown that the aging phenomenon is caused by water vapor and that inter-granular silicate glassy phases play no significant role. Transmission electron microscopy of thin foils, before and after aging, showed that the water vapor reacted with yttrium in the ZrO2 to produce clusters of small (20 to 50 nm) crystallites of α-Y(OH)3. It is hypothesized that this reaction produces a monoclinic nucleus (depleted of Y2O3) on the surface of an exposed tetragonal grain. Monoclinic nuclei greater than a critical size grow spontaneously to transform the tetragonal grain. If the transformed grain is greater than a critical size, it produces a microcrack which exposes subsurface tetragonal grains to the aging phenomenon and results in catastrophic degradation. Degradation can be avoided if the grain size is less than the critical size required for microcracking.  相似文献   

7.
The control of the microstructure of Ce-doped Al2O3/ZrO2 componsites by the valence change of cerium ion has been demonstrated. Two distinctively different types of microstructure, large Al2O3 grains with intragranular ZrO2 particles and small Al2O3 grains with intergranular ZrO2 particles, can be obtained under identical presintering processing conditions. At doping levels greater than ∼ 3 mol% with respect to ZrO2, Ce3+ raises the alumina grain-boundary to zirconia particle mobility ratio. This causes the breakaway of grain boundary from particles and the first type of microstructure. On the other hand, Ce4+ causes no breakaway and produces a normal intergranular ZrO2 distribution. The dramatic effect of Ce3+ on the relative mobility ratio is found to be associated with fluxing of the glassy boundary phase and is likewise observed for other large trivalent cation dopants. The ZrO2 second phase acts as a scavenger for these trivalent cations, provided their solubility limit in ZrO2 is not exceeded.  相似文献   

8.
The phase diagram of the system ZrO2-CeO2 was rein-vestigated using hydrothermal techniques. Cubic, tetragonal, and monoclinic solid solutions are present in this system. The tetragonal solid solution decomposes to monoclinic and cubic solid solutions by a eutectoid reaction at 1050°50°C. The solubility limits of the tetragonal and cubic solid solutions are about 18 and 70 mol% CeO2, respectively, at 1400°C, and about 16 and 80 mol% CeO2, respectively, at 1200°C. Solubility limits of the monoclinic and cubic solid solutions are about 1.5 and 88 mol% CeO2 at 1000°C, and 1.5 and 98 mol% CeO2 at 800°C, respectively. The compound Ce2Zr3O10 is not found in this system.  相似文献   

9.
Composites of β-Ce2O3·11Al2O3 and tetragonal ZrO2 were fabricated by a reductive atmosphere sintering of mixed powders of CeO2, ZrO2 (2 mol% Y2O3), and Al2O3. The composites had microstructures composed of elongated grains of β-Ce2O3·11Al2O3 in a Y-TZP matrix. The β-Ce2O3·11Al2O3 decomposed to α-Al2O3 and CeO2 by annealing at 1500°C for 1 h in oxygen. The elongated single grain of β-Ce2O3·11Al2O3 divided into several grains of α-Al2O3 and ZrO2 doped with Y2O3 and CeO2. High-temperature bending strength of the oxygen-annealed α-Al2O3 composite was comparable to the β-Ce2O3·11Al2O3 composite before annealing.  相似文献   

10.
The present work involves the observation of phase transformation in Y2O3-containing tetragonal ZrO2 polycrystals (Y-TZP) using electron microscopy. The observations indicate that the martensitic phase transformation ususally starts from grain boundaries. Transformation was also observed at the tip of a microcrack and its adjacent region. Our observations also indicate that the tetragonal ZrO2 grains do not all transform at the same time at the fracture surfaces.  相似文献   

11.
The average grain size of ZrO2(+Y, o,) materials sintered at 1400°C was observed to depend significantly on the Y2O3 content. The average grain size decreased by a factor of 4 to 5 for Y2O3 contents between 0.8 and 1.4 mol% and increased at Y2O3 contents of 6.6 mol%. Grain growth control by a second phase is the concept used to interpret these data; compositions with a small grain size lie within the two-phase tetragonal + cubic phase field, and the size of the tetragonal grains is believed to be controlled by the cubic grains. This interpretation suggests that the Y2O3-rich boundary of the two-phase field lies between 0.8 and 1.4 mol% Y2O3. Transformation toughened materials fabricated in this binary system must have a composition that lies within the two-phase field to obtain the small grain size required, in part, to retain the tetragonal toughening agent.  相似文献   

12.
Annealing of ZrO2-toughened Al2O3 (ZTA) at elevated temperatures causes growth of both the intergranular ZrO2 particles and the Al2O3"matrix" grains. Exaggerated ("breakaway") grain growth occurs in some, but not all, specimens. Analytical electron microscopy of two ZTA's, both of which contained a continuous amorphous (glassy) grain-boundary phase, but only one of which showed breakaway grain growth, revealed that the occurrence of breakaway grain growth could be correlated with the chemistry of the ubiquitous glassy grain-boundary phase.  相似文献   

13.
The fracture and transformation behavior of tetragonal polycrystalline ZrO2 alloys containing 18 mol% CeO2 (Ce-TZP) was investigated. In the absence of applied stress the tetragonal phase was found to be stable in large-grained (>30 μm) samples at room temperature. The monoclinic phase was detected in regions of high residual stress near hardness indentations although no evidence of a wake of monoclinic phase along the fracture surface was observed. The fracture toughness increased from 4 to 7 MPa · m1/2 as density and/or grain size increased. It is proposed that the relatively high toughness of these materials is due to the occurrence of stress-driven tetragonal-to-monoclinic transformation near the crack tip, which reverses when the crack has passed.  相似文献   

14.
ZrO2 powder is prepared by low-temperature vapor-phase hydrolysis of ZrCl4. TG-DTA, XRD, Raman, BET, and TEM methods are used to investigate the particle size, phase composition, and agglomeration before and after heat treatment. The results show that the as-prepared ZrO2 powder is characterized by large surface area (150 m2/g), fine grain size (5.8 nm), and weak agglomeration. Additionally, the as-prepared ZrO2 powder shows predominantly tetragonal phase attributed to a grain size effect. This route is free of powder drying and calcination processes that are essential for wet chemical preparation, contributing to less agglomeration.  相似文献   

15.
Seeding a mixture of boehmite (AIOOH) and colloidal ZrO2 with α-alumina particles and sintering at 1400°C for 100 min results in 98% density. The low sintering temperature, relative to conventional powder processing, is a result of the small alumina particle size (∼0.3 μm) obtained during the θ-to α-alumina transformation, homogeneous mixing, and the uniform structure of the sol-gel system. Complete retention of pure ZrO2 in the tetragonal phase was obtained to 14 vol% ZTA because of the low-temperature sintering. The critical grain size for tetragonal ZrO2 was determined to be ∼0.4 μm for the 14 vol% ZrO2—Al2O3 composite. From these results it is proposed that seeded boehmite gels offer significant advantages for process control and alumina matrix composite fabrication.  相似文献   

16.
Coupled crystallization has been observed in the Al3O3/10%-ZrO2 system by heating an amorphous precursor Al /Zr copolymerized alkoxide network structure. A finely divided two-phase material results which stabilizes tetragonal ZrO2 to 1700°C and exhibits an unprecedented microstructure. During crystallization, the grain growth of ZrO2 is coupled to the γ→α phase transformation of Al2O3.  相似文献   

17.
Metastable tetragonal ZrO2 phase has been observed in ZrO2–SiO2 binary oxides prepared by the sol–gel method. There are many studies concerning the causes of ZrO2 tetragonal stabilization in binary oxides such as Y3O2–ZrO2, MgO–ZrO2, or CaO–ZrO2. In these binary oxides, oxygen vacancies cause changes or defects in the ZrO2 lattice parameters, which are responsible for tetragonal stabilization. Since oxygen vacancies are not expected in ZrO2–SiO2 binary oxides, tetragonal stabilization should just be due to the difficulty of zirconia particles growing in the silica matrix. Furthermore, changes in the tetragonal ZrO2 crystalline lattice parameters of these binary oxides have recently been reported in a previous paper. The changes of the zirconia crystalline lattice parameters must result from the chemical interactions at the silica–zirconia interface (e.g., formation of Si–O–Zr bonds or Si–O groups). In this paper, FT-IR and 29Si NMR spectroscopy have been used to elucidate whether the presence of Si–O–Zr or Si–O is responsible for tetragonal phase stabilization. Moreover, X-ray diffraction, Raman spectroscopy, and transmission electron microscopy have also been used to study the crystalline characteristics of the samples.  相似文献   

18.
Several unusual microstructural features, i.e., 90° tetragonal ZrO2 twins containing antiphase domain boundaries, tetragonal ZrO2 precipitates in a colony morphology, and precipitate-free zones at the perimeter of cubic ZrO2 grains containing fine tetragonal ZrO2 precipitates, were observed in a single ZrO2-12 wt% Y2O2 ceramic annealed at 1550°, 1400°, and 1250°C, respectively. The type of phase transformation responsible for each microstructural feature is described.  相似文献   

19.
The microstructures of 3 zirconias partially stabilized with CaO were investigated using scanning electron microscopy and qualitative and quantitative X-ray analysis. The structure was closely related to the heat treatments involved in fabrication. A bimodal structure with small grains of pure ZrO2 dispersed along the grain boundaries of larger cubic solid-solution grains developed during slow cooling from 1850° to 1300°C. The presence of a liquid phase greatly enhances the growth of the pure ZrO2 phase. An anneal at 1300°C induces precipitation of fine ZrO2 particles within the solid-solution grains. The relative mechanical strengths of the materials are explained in terms of the weakening of the grain boundaries associated with the transformation of the grain-boundary phase on cooling.  相似文献   

20.
ZrO2–Al2O3 nanocomposite particles were synthesized by coating nano-ZrO2 particles on the surface of Al2O3 particles via the layer-by-layer (LBL) method. Polyacrylic acid (PAA) adsorption successfully modified the Al2O3 surface charge. Multilayer coating was successfully implemented, which was characterized by ξ potential, particle size. X-ray diffraction patterns showed that the content of ZrO2 in the final powders could be well controlled by the LBL method. The powders coated with three layers of nano-ZrO2 particles, which contained about 12 wt% ZrO2, were compacted by dry press and cold isostatically pressed methods. After sintering the compact at 1450°C for 2 h under atmosphere, a sintered body with a low pore microstructure was obtained. Scanning electron microscopy micrographs of the sintered body indicated that ZrO2 was well dispersed in the Al2O3 matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号