首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rolling contact fatigue performance of detonation gun coated elements   总被引:3,自引:0,他引:3  
Rolling contact fatigue performance of thermal spray coatings has been investigated using an experimental approach. A modified four ball machine which simulates a rolling element bearing was used to examine the coating performance and failure modes in a conventional steel ball bearing and hybrid ceramic bearing configurations. Tungsten carbide (WC-15% Co) and aluminium oxide (Al2O3) were thermally sprayed using a super D-Gun (SDG2040) on M-50 bearing steel substrate in the geometrical shape of a cone. A coated cone replaced the upper ball that contacts with three lower balls. The rolling contact fatigue (RCF) tests were performed under immersed lubricated conditions using two different lubricants. Fatigue failure modes were observed using a scanning electron microscope. Microhardness measurements of the coating and the substrate and elastohydrodynamic fluid film thickness results are included. The results show the requirement for significant optimization of the coating before use in rolling element bearing applications. The coating was fractured in a delamination mode. Test results show an optimization in coating process is required before these coatings can be used for rolling contact applications. WC-Co coatings perform better than Al2O3 coatings in rolling contact.  相似文献   

2.
The tribological properties of part surfaces, namely their wear resistance and friction properties, are decisive in many cases for their proper function. To improve surface properties, it is possible to create hard, wear-resistant coatings by thermal spray technologies. With these versatile coating preparation technologies, part lifetime, reliability, and safety can be improved. In this study, the tribological properties of the HVOF-sprayed coatings WC–17%Co, WC–10%Co4%Cr, WC–15% NiMoCrFeCo, Cr3C2–25%NiCr, (Ti,Mo)(C,N)–37%NiCo, NiCrSiB, and AISI 316L and the plasma-sprayed Cr2O3 coating were compared with the properties of electrolytic hard chrome and surface-hardened steel. Four different wear behavior tests were performed; the abrasive wear performance of the coatings was assessed using a dry sand/rubber wheel test according to ASTM G-65 and a wet slurry abrasion test according to ASTM G-75, the sliding wear behavior was evaluated by pin-on-disk testing according to ASTM G-99, and the erosion wear resistance was measured for three impact angles. In all tests, the HVOF-sprayed hardmetal coatings exhibited superior properties and can be recommended as a replacement for traditional surface treatments. Due to its tendency to exhibit brittle cracking, the plasma-sprayed ceramic coating Cr2O3 can only be recommended for purely abrasive wear conditions. The tested HVOF-sprayed metallic coatings, NiCrSiB and AISI 316L, did not have sufficient wear resistance compared with that of traditional surface treatment and should not be used under more demanding conditions. Based on the obtained data, the application possibilities and limitations of the reported coatings were determined.  相似文献   

3.
《Wear》2006,260(4-5):422-432
In the present investigation NiCrAlY, Ni-20Cr and Ni3Al metallic coatings were deposited on a Ni-based superalloy (18.5Fe-19Cr-0.15Cu-0.5Al-3.05Mo-0.18Mn-0.9Ti-0.18S-0.04C-5.13 (Ta + Cb)-balance Ni). NiCrAlY was used as bond coat in all the cases. Erosion studies were conducted on uncoated as well as plasma spray coated superalloy specimens at room temperature. The erosion experiments were carried out using an air-jet erosion test rig at a velocity of 40 m/s and impingement angles of 30 and 90°. Silica sand particles of size ranging between 150 and 212 μm were used as erodent. The coatings have been characterised by scanning electron microscope (SEM), optical microscope, microhardness tester and X-ray diffractometer (XRD). Scanning electron microscope (SEM), equipped with an energy dispersive X-ray analyser (EDAX) was used to analyse the eroded surfaces. Possible erosion mechanisms are discussed. The phases revealed by XRD of the coatings have shown the formation of solid solutions. Out of the three plasma sprayed coatings, the Ni3Al coating gave the lowest erosion rate regardless of the impact angle, and the Ni-20Cr coating gave the highest erosion rate.  相似文献   

4.
Tribological behaviors of plasma-sprayed conventional and nanostructured Cr2O3-3%TiO2 ceramic coatings (i.e., CC3T and NC3T, respectively) using pin on disc type dry sliding and pot type slurry erosion test were investigated in the present work. The experimental results indicated that there were two main wear mechanisms, plastic smearing and adhesive tearing, in the worn coatings under dry sliding. Plastic smearing corresponded to a lower average friction coefficient and wear rate, while adhesive tearing corresponded to higher values. The erosive environment selected for the slurry erosion experiments include 10, 20 and 30% of SiO2 slurry concentrations in water with particle size 75-106 μm. The main damage mechanism observed in all the coatings submitted to slurry erosion were the formation and propagation of brittle cracks resulting in the detachment of coating surface material. Microstructural investigation was also carried to investigate the wear and erosion mechanism of the coatings using FE-SEM and EDS analysis. Properties like microhardness and porosity were also investigated for these coatings. Tribological performance of NC3T was better as compared to CC3T as observed in the present work.  相似文献   

5.
This paper studies the friction and wear behaviour of two important bearing materials, Thordon XL and LgSn80, in dry and lubricated sliding vs. plasma-sprayed Cr2O3 coatings. As a reference, AISI 1043 steel is also studied under the same conditions. SEM, EDS and surface topography were employed to study the wear mechanisms. The results indicate that the Thordon XL/Cr2O3 coating pair gives the lowest dry friction coefficient (0.16) under a normal load of 45.3 N (pressure 0.453 MPa) at a velocity of 1 m/s. The dry friction coefficient of Thordon XL/Cr2O3 coating increases to 0.38 under a normal load of 88.5 N (pressure 0.885 MPa). The dry friction coefficients of the LgSn80/Cr2O3 coating are in the range of 0.31–0.46. Secondly, both dry wear rate under low normal load (45.3 N) and lubricated wear rate under a load of 680 N for Thordon XL are lower than those of LgSn80 in sliding against plasma-sprayed Cr2O3 coatings at a speed of 1 m/s. However, under a normal load of 88.5 N the dry wear rate of Thordon XL is much higher than that of LgSn80. Thirdly, a high viscosity lubricant (SAE 140) leads to lower wear for Thordon XL and LgSn80 than a low viscosity lubricant (SAE 30). Finally, the dominating wear mechanism for Thordon XL is shear fracture when against the plasma-sprayed Cr2O3 ceramic coating. For LgSn80 against plasma-sprayed Cr2O3 ceramic coating, abrasive wear is the governing failure mechanism.  相似文献   

6.
The effect of laser remelting on the wear behaviour of plasma-sprayed ZrO2 ceramic coatings was studied. The results showed that the porosity and roughness of the coatings were reduced significantly after laser treatment, and the bonding strength was apparently increased by the remelting process. However, there were extensive network cracks, as well as a few large bubbles, in the laser-treated coatings. Unlubricated pin-on-disc wear tests revealed that, when compared with as-sprayed ceramic coatings, the wear resistance was improved significantly after laser treatment. The wear resistance of laser-treated specimens increased with increasing laser power, and the minimum weight loss of the coating specimen occurred at a specific travel speed in laser processing. The main wear mechanism of the as-sprayed coatings was spallation of the coating, whereas the wear of laser-remelted specimens was dominated by ploughing and gouging (scratching).  相似文献   

7.
Kim  S.-S.  Chae  Y.-H.  Choi  S.-Y. 《Tribology Letters》2004,17(3):663-668
The most controversial topics in plasma sprayed ceramic coating systems recently are mechanical properties such as bond strength, cohesive strength and toughness. In our research, critical fracture load (P c) and interface toughness (K c) of four-coating materials were computed from the applied load, crack length and Young's modulus data that were measured by micro-Vickers and a nano-indentation test. It is reasonable to consider the P c value as comparison data of bond strength, and the K c value, considering a trace of indent in the interface, was computed by a modified (E/H)I 1/2ratio. Also, we knew that P c decreased as the hardness of the coating increased. In the case of the high load (9.8 and 19.6N) in the Al2O3+13%TiO2 coating, the critical point (P co) was found at which the coating was broken. Used by a XRD phase analysis, we checked changes of the coating's properties and predicted a possible change of the phases in plasma-sprayed coating.  相似文献   

8.
This paper studies experimentally the effects of CO2 laser-treatment on the wear behaviour of plasma-sprayed Al2O3 coatings, in linear contact sliding (dry, abrasive and lubricated) against SAE 4620 steel. Tests were carried out using a block-on-ring friction and wear tester, under different loads at different speeds. The wear mechanism and the changes in adherence, porosity and microstructure by laser treatment were also investigated. Results show a better wear behaviour for both laser-treated ceramic coating and its paired steel under dry and abrasive conditions, compared with the case without laser treatment. The lubricated wear behaviour of the laser-treated ceramic coating, however, is not improved. The changes in microhardness, porosity and adherence caused by the laser treatment are responsible for the change in wear behaviour of the ceramic coating.  相似文献   

9.
The effect of the sliding speed on friction and wear characteristics of plasma-sprayed ceramic coatings (Al2O3-13% TiO2, ZrO2-8% Y2O3, Al2O3-modified) was studied. Plasma-sprayed coatings are not hard and have high layered structure. Abrasion of coatings in the friction pair with steel and bronze counter-bodies occurs through brittle detachment conglomerated regions with low cohesive resistance. The modified coating (Al2O3) has the highest wear resistance and the lower coefficient of friction compared to the coatings (Al2O3-13% TiO2, ZrO2-8% Y2O3) in the studied velocity range (0.1–10 mm/s). Laser melting can be used as an efficient way of increasing the tribotechnical properties of plasma-sprayed oxide coatings.  相似文献   

10.
Slurry erosion performance of detonation gun (D-gun) spray ceramic coatings (Al2O3 and Al2O3–13TiO2) on CF8M steel has been investigated. Slurry collected from an actual hydro power plant was used as the abrasive media in a high speed erosion test rig. Attempt has been made to study the effect of concentration (ppm), average particle size and rotational speed on the slurry erosion behaviour of these ceramic-coated steels under different experimental conditions. The analysis of eroded samples was done using SEM, XRD and stylus profilometry. The slurry erosion performance of the D-gun spray Al2O3–13TiO2-coated steel has been found to be superior to that of Al2O3-coated steel. Both the coatings showed brittle fracture mechanism of material removal during the slurry erosion exposure.  相似文献   

11.
A ferrous-based coating with significant chromium was fabricated on aluminum alloy substrate using a plasma spray technique. The tribological performance of the as-fabricated ferrous-based coating sliding against different coatings including Cr, CrN, TiN, and diamond-like carbon (DLC) in an engine oil environment were comparatively studied. Results showed that the high hardness of the sprayed ferrous-based coating was achieved due to the dispersion strengthening effect of Cr7C3 phase embedded in the austenite matrix. The ferrous-based coating exhibited low friction coefficients when coupled with these four coating counterparts, which could be attributed to the boundary lubricating effect of engine oil. However, both friction and wear of the ferrous-based coating were different when sliding against these different coating counterparts, which might be closely related to the surface roughness, self-lubricating effect, and mechanical properties of the coupled coatings. Ferrous-based coating sliding against CrN and DLC coatings exhibited good tribological performance in engine oil. The best coating counterpart for the ferrous-based coating in an engine was DLC coating.  相似文献   

12.
Efforts were made to achieve lower (R q < 0.1 μm) initial RMS roughnesses of PS304 coatings so that they may be considered for foil bearings operating under increasingly severe conditions that result in smaller air film thicknesses. Attainable roughness of conventional plasma-sprayed PS304 coatings has been typically R q > 0.25 μm, as limited by porosity in the deposited coating and surface irregularities correspondingly formed upon finishing. Initial attempts at achieving dense coatings by instead using a high-velocity oxyfuel (HVOF) flame-spraying process failed due to insufficient heating and softening of the NiCr and Cr 2 O 3 constituents of the PS304 feed powder, which rebounded from the steel target substrate and resulted in low deposition yield. Efficient HVOF deposition by a hydrogen-fueled system was achieved using NiCr and Cr 2 O 3 constituent particles of reduced size that were more effectively heated. The resultant dense coatings provided roughnesses as low as R q = 0.05 μm upon polishing. Tribological performance of these HVOF coatings was evaluated against Inconel X-750 in thrust-washer tests at a sliding speed of 5.4 m/s, with contact pressures of 20 and 40 kPa, and ambient or 500°C temperatures. The wear and friction performances in direct sliding contact, as would exist upon loss of separating air-bearing film, of the PS304 coatings produced by HVOF are found to be similar to those deposited by the plasma spray process.  相似文献   

13.
Slurry erosion behaviour of HVOF (High Velocity Oxy Fuel) and plasma sprayed coatings on CA6NM hydraulic turbine steel has been investigated at different levels of various parameters. The Cr2O3–50%Al2O3 composite powder was prepared and deposited on CA6NM steel samples to get the uniform thickness coatings. The surface roughness, porosity and microhardness of as-coated samples were measured. The as-coated samples were subjected to SEM/EDS analysis to evaluate the surface microstructure of the developed coatings. Erosion tests were performed on self made erosion test rig under hydro accelerated conditions. The study reveals that the velocity, impact angle and slurry concentration were the most significant parameters, influencing the erosion rate of these coatings. The average particle size had least affect on the erosion rate. HVOF-coated samples showed better corrosion resistance as compared to plasma-coated samples due to high hardness of HVOF-coated CA6NM samples.  相似文献   

14.
A series of plasma sprayed alumina coatings was evaluated regarding their erosion and abrasion characteristics. The coatings were deposited under different spraying conditions, using a commercial axial injection plasma spray system, and with powders of different grit sizes and crystallinity. A sintered bulk alumina and a conventionally sprayed coating, produced by a radial injection air plasma spray technique, were tested as reference materials. To evaluate the importance of energy input the coatings were produced using two different torch nozzle sizes and gas mixtures with a varied amount of hydrogen. The erosion and abrasion results indicate that hydrogen concentration, nozzle size and precursor powder type and size influence the tribological characteristics of the coatings. The wear resistance of the coatings seems to benefit from an increase in hydrogen concentration or torch nozzle size. The effect of precursor powder size on the wear resistance was more complex but indicates that sapphire powders of medium precursor sizes are advantageous to ordinary plasma spraying powders of alumina.  相似文献   

15.
Thermally sprayed coatings are inherently associated with residual stresses in the coatings. These stresses have a noticeable effect on the physical and mechanical properties of coatings. The high speed hole drilling method is widely used to measure the residual stress. Due to the nature of the thermally sprayed coatings, the application of this method for WC/Co coatings has some limitations. In the current study, WC-12Co coatings were deposited using HVOF thermal spraying. The electro discharge hole drilling method was developed to measure the through thickness residual stress in WC-Co thermally sprayed coatings. Morphological studies were conducted using optical microscopy and scanning electron microscopy (SEM) to evaluate the powder and coating characteristics. The sin2ψ method was used to evaluate the surface residual stress by means of XRD. The residual stress at the surface using EDM and XRD was approximately ?32.54 MPa and ?40.6 MPa respectively. The experimental results reveal that the stress curves are not uniform through the coating thickness. It has been found that the mean residual stress is of approximately ?126 MPa. Obtained results are in good agreement with the reported values from literatures. The developed method confirms the feasibility of residual stresses measurement for HVOF thermally sprayed WC-Co coatings.  相似文献   

16.
《Wear》2007,262(5-6):562-567
NiCrWRE alloy coatings with the addition of CeO2 were produced on a medium-carbon steel substrate by thermal spray welding. The bonding strength of the coatings was measured by tensile testing and reached 300–350 MPa. The wear behavior of the coatings was investigated under dry sliding wear conditions, and was compared with that of NiCrW coatings produced without the addition of CeO2. The results show that the hardness and wear resistance of the thermal spray welded coatings are significantly increased with the addition of CeO2. Analysis of the worn surfaces revealed that the coatings with CeO2 addition show improved abrasive wear resistance over the coatings without CeO2.  相似文献   

17.
硬密封球阀耐冲蚀陶瓷涂层研究   总被引:5,自引:2,他引:5  
利用多功能超音速火焰喷涂技术,在金属硬密封球阀的阀芯上制备了WC-12Co金属陶瓷涂层,用于提高球阀的耐冲蚀磨损性能。试验表明,涂层机械力学性能好,与基体结合强度超过70MPa,孔隙率小于2%,硬度超过HV1000,耐冲蚀磨损性能比基体提高5倍以上,有效地提高了球阀的使用寿命和密封可靠性。  相似文献   

18.
《Wear》1996,199(1):24-32
Varieties of bed ash and fly ash were retrieved from operating fluidized bed combustor (FBC) boilers firing different fuels in North America and Europe. Using these ashes, the relative erosion-corrosion resistances of HVOF Cr3C2NiCr coating and several other thermal sprayed coatings were determined in an elevated temperature blast nozzle erosion tester. Test conditions attempted to simulate erosive conditions found at the refractory—waterwall interface and in the convection pass region in tubular heat exchangers of FBC boilers. Erosion-corrosion (E-C) wastage mechanisms of the structural metals (AISI 1018, ASTM SA213-T22) were discussed and compared with the E-C wastage of HVOF Cr3C2NiCr cermet coatings. The relatively different erosivities of ashes retrieved from North America and from Europe were also discussed.  相似文献   

19.
Plasma spraying is used to produce wear resistant coatings. However, the primary problem is the poor bonding strength between the coating and the substrate. The secondary problem is the high porosity in the as-sprayed coatings, which reduces the wear resistance of coating. In order to overcome these problems, the sealing of plasma-sprayed coating by electrodeposition has been used. The sealing of plasma-sprayed coatings alters the wear mechanism and wear resistance. The wear mechanism and wear resistance largely depends on the applied load, sliding speed and sliding distance. Hence, an effort has been made in the present work to study the effects of these parameters on wear volume loss using response surface methodology (RSM)-based mathematical models. The experiments were conducted as per Central Composite Design (CCD). It reveals that the applied load was the most predominant factor affecting the wear volume loss of the coating material. The sliding speed is the next most important parameter influencing the wear volume loss. The wear volume loss of the sealed plasma-sprayed molybdenum coating occurs mainly due to the formation of grooves, surface tribo films, fracture of splats and delamination of the coating.  相似文献   

20.
Fe62Ni3Cr4Mo2W3Si6B17C3 amorphous coatings were thermally sprayed by a high velocity oxygen fuel spraying system (DJ-2700) and heat-treated at the temperatures ranges from 873 to 1,173 K in vacuum for 1 h. Differential scanning calorimetry, X-ray diffraction (XRD), and scanning electron microscopy were used to study the microstructural characteristics of the coatings. Vickers hardness tester was used to measure the hardness of the coatings. At the same time, the sliding wear behavior of the coatings was evaluated in a reciprocating ball-on-disk system. Within the resolution of XRD, amorphous structure without apparent crystalline phases was obtained in the as-sprayed coating. The heat treatments above 873 K led to the crystallization of amorphous phase. With the increase of heat treatment temperature, diffusion and sintering could occur between the layers of the coatings. The highest microhardness was obtained in the coating heat-treated at 973 K. When wear tested at a relative low load of 2 N, a direct correlation between the hardness and wear resistance of the coatings seems to be reasonable. However, at relative high loads, the wear resistance of the coatings is dependent on the resistance to crack initiation and growth between the layers rather than the hardness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号