首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Honey bees are important avocado pollinators. However, due to the low attractiveness of flowers, pollination is often inadequate. Previous work has revealed that avocado honey is relatively unattractive to honey bees when compared with honey from competing flowers. We characterized avocado honey and nectar with respect to their odor, color, and composition of sugars, phenolic compounds, and minerals. Furthermore, we tested how honey bees perceive these parameters, using the proboscis extension response bioassay and preference experiments with free-flying bees. Naïve bees were indifferent to odors of avocado and citrus flowers and honey. Experienced bees, which were collected in the field during the blooming season, responded preferentially to odor of citrus flowers. The unique sugar composition of avocado nectar, which contains almost exclusively sucrose and a low concentration of the rare carbohydrate perseitol, and the dark brown color of avocado honey, had no negative effects on its attractiveness to the bees. Phenolic compounds extracted from avocado honey were attractive to bees and adding them to a solution of sucrose increased its attractiveness. Compared with citrus nectar and nonavocado honey, avocado nectar and honey were rich in a wide range of minerals, including potassium, phosphorus, magnesium, sulfur, iron, and copper. Potassium and phosphorus, the two major minerals, both had a repellent effect on the bees. Possible explanations for the presence of repellent components in avocado nectar are discussed.  相似文献   

2.
Herbivory induces changes in plants that influence the associated insect community. The present study addresses the potential trade-off between plant phytochemical responses to insect herbivory and interactions with pollinators. We used a multidisciplinary approach and have combined field and greenhouse experiments to investigate effects of herbivory in plant volatile emission, nectar production, and pollinator behavior, when Pieris brassicae caterpillars were allowed to feed only on the leaves of Brassica nigra plants. Interestingly, volatile emission by flowers changed upon feeding by herbivores on the leaves, whereas, remarkably, volatile emission by leaves did not significantly differ between infested and non-infested flowering plants. The frequency of flower visits by pollinators was generally not influenced by herbivory, but the duration of visits by honeybees and butterflies was negatively affected by herbivore damage to leaves. Shorter duration of pollinator visits could be beneficial for a plant, because it sustains pollen transfer between flowers while reducing nectar consumption per visit. Thus, no trade-off between herbivore-induced plant responses and pollination was evident. The effects of herbivore-induced plant responses on pollinator behavior underpin the importance of including ecological factors, such as herbivore infestation, in studies of the ecology of plant pollination.  相似文献   

3.
Hyperaccumulation is the phenomenon whereby plants take up and sequester in high concentrations elements that generally are excluded from above-ground tissues. It largely is unknown whether the metals taken up by these plants are transferred to floral rewards (i.e., nectar and pollen) and, if so, whether floral visitation is affected. We grew Streptanthus polygaloides, a nickel (Ni) hyperaccumulator, in short-term Ni supplemented soils and control soils to determine whether Ni is accumulated in floral rewards and whether floral visitation is affected by growth in Ni-rich soils. We found that while supplementation of soils with Ni did not alter floral morphology or reward quantity (i.e., anther size or nectar volume), Ni did accumulate in the nectar and pollen-filled anthers—providing the first demonstration that Ni is accumulated in pollinator rewards. Further, S. polygaloides grown in Ni-supplemented soils received fewer visits per flower per hour from both bees and flies (both naïve to Ni-rich floral resources in the study area) relative to plants grown in control soils, although the probability a plant was visited initially was unaffected by Ni treatment. Our findings show that while Ni-rich floral rewards decrease floral visitation, floral visitors are not completely deterred, so some floral visitors may collect and ingest potentially toxic resources from metal-hyperaccumulating plants. In addition to broadening our understanding of the effects of metal accumulation on ecological interactions in natural populations, these results have implications for the use of insect-pollinated plants in phytoremediation.  相似文献   

4.
In their natural environment, plants are synchronously confronted with mutualists and antagonists, and thus benefit from signals that contain messages for both functional groups of interaction partners. Floral scents are complex blends of volatiles of different chemical classes, including benzenoids and terpenoids. It has been hypothesized that benzenoids have evolved as pollinator attracting signals, while monoterpenoids serve as defensive compounds against antagonists. In order to test this hypothesis, we reduced terpene emission in flowers of Phlox paniculata with specific biosynthetic inhibitors and compared the responses of Lasius niger ants to natural and inhibited floral scent bouquets. While the natural odors were strongly repellent to ants, the bouquets with a reduced emission rate of terpenoids were not. The loss of the flowers’ ability to repel ants could be attributed predominantly to reduced amounts of linalool, a monoterpene alcohol. Flying flower visitors, mainly hoverflies, did not discriminate between the two types of flowers in an outdoor experiment. Since individual compounds appear to be capable of either attracting pollinators or defending the flower from enemies, the complexity of floral scent bouquets may have evolved to allow flowers to respond to both mutualists and antagonists simultaneously.  相似文献   

5.
Plant secondary metabolites (PSMs), such as alkaloids, are often found in many parts of a plant, including flowers, providing protection to the plant from various types of herbivores or microbes. PSMs are also present in the floral nectar of many species, but typically at lower concentrations than in other parts of the plant. Nectar robbers often damage floral tissue to access the nectar. By doing so, these nectar robbers may initiate an increase of PSMs in the floral nectar. It is often assumed that it takes at least a few hours before the plant demonstrates an increase in PSMs. Here, we addressed the question of whether PSMs in the floral tissue are immediately being released into the floral nectar following nectar robbing. To address this research question, we investigated whether there was an immediate effect of nectar robbing by the Palestine Sunbird (Nectarinia osea) on the concentration of nectar alkaloids, nicotine and anabasine, in Tree Tobacco (Nicotiana glauca). We found that the concentration of anabasine, but not nicotine, significantly increased in floral nectar immediately following simulated nectar robbing. These findings suggest that nectar robbers could be ingesting greater amounts of PSMs than they would if they visit flowers legitimately. As a consequence, increased consumption of neurotoxic nectar alkaloids or other PSMs could have negative effects on the nectar robber.  相似文献   

6.
To investigate honeybee foraging responses to toxic nectar, honey was collected from Apis cerana colonies in the Yaoan county of Yunnan Province, China, during June, when flowers of Tripterygium hypoglaucum were the main nectar source available. Pollen analysis confirmed the origin of the honey, and high-performance liquid chromatography showed the prominent component triptolide to be present at a concentration of 0.61 μg/g ± 0.11 SD. In cage tests that used young adult worker bees, significantly more of those provided with a diet of T. hypoglaucum honey mixed with sugar powder (1:1) died within 6 d (68.3%) compared to control groups provided with normal honey mixed with sugar powder (15.8%). Honeybees were trained to visit feeders that contained honey of T. hypoglaucum (toxic honey) as the test group and honey of Vicia sativa or Elsholtzia ciliata as control groups (all honeys diluted 1:3 with water). Bees preferred the feeders with normal honey to those with toxic honey, as shown by significantly higher visiting frequencies and longer imbibition times. However, when the feeder of normal honey was removed, leaving only honey of T. hypoglaucum, the foraging bees returned to the toxic honey after a few seconds of hesitation, and both visiting frequency and imbibition time increased to values previously recorded for normal honey. Toxic honey thus became acceptable to the bees in the absence of other nectar sources.  相似文献   

7.
Mutualists and antagonists may place conflicting selection pressures on plant traits. For example, the evolution of floral traits is typically studied in the context of attracting pollinators, but traits may incur fitness costs if they are also attractive to antagonists. Striped cucumber beetles (Acalymma vittatum) feed on cucurbits and are attracted to several volatiles emitted by Cucurbita blossoms. However, the effect of these volatiles on pollinator attraction is unknown. Our goal was to determine whether pollinators were attracted to the same or different floral volatiles as herbivorous cucumber beetles. We tested three volatiles previously found to attract cucumber beetles in a factorial design to determine attraction of squash bees (Peponapis pruinosa), the specialist pollinators of cucurbita species, as well as the specialist herbivore A. vittatum. We found that 1,2,4-trimethoxybenzene was attractive to both the pollinator and the herbivore, indole was attractive only to the herbivore, and (E)-cinnamaldehyde was attractive only to the pollinator. There were no interactions among volatiles on attraction of squash bees or cucumber beetles. Our results suggest that reduced indole emission could benefit plants by reducing herbivore attraction without loss of pollination, and that 1,2,4-trimethoxybenzene might be under conflicting selection pressure from mutualists and antagonists. By examining the attraction of both mutualists and antagonists to Cucurbita floral volatiles, we have demonstrated the potential for some compounds to influence only one type of interaction, while others may affect both interactions and possibly result in tradeoffs. These results shed light on the potential evolution of fragrance in native Cucurbita, and may have consequences for yield in agricultural settings.  相似文献   

8.
Floral scents play a key role in mediating plant-pollinator interactions. Volatile organic compounds (VOCs) emitted by flowers are used by flower visitors as olfactory cues to locate flowers, both from a distance and at close range. More recently it has been demonstrated that reactive molecules such as ozone can modify or degrade VOCs, and this may impair the communication between plants and their pollinators. However, it is not known whether such reactive molecules also may affect the olfactory system of pollinators, and thus not only influence signal transmission but perception of the signal. In this study, we used electroantennographic measurements to determine the effect of increased levels of ozone on antennal responses in western honey bees (Apis mellifera L.). Linalool and 2-phenylethanol, both known to be involved in location of flowers by the bees, and (Z)-3-hexenyl acetate, a widespread green leaf volatile also detected by bees, were used. The results showed that ozone affected antennal responses to the different substances differently. Ozone decreased antennal responses to (Z)-3-hexenyl acetate, whereas responses to linalool and 2-phenylethanol were not influenced by ozone. Overall, the study does not provide evidence that pollination by honey bees is impaired by damage in the olfactory system of the bees caused by increased levels of ozone, at least when linalool and 2-phenylethanol are the attractive signals. However, the results also suggest that ozone can change the overall perception of an odor blend. This might have negative effects in pollination systems and other organismic interactions mediated by specific ratios of compounds.  相似文献   

9.
Ophrys flowers mimic sex pheromones of attractive females of their pollinators and attract males, which attempt to copulate with the flower and thereby pollinate it. Virgin females and orchid flowers are known to use the same chemical compounds in order to attract males. The composition of the sex pheromone and its floral analogue, however, vary between pollinator genera. Wasp-pollinated Ophrys species attract their pollinators by using polar hydroxy acids, whereas Andrena-pollinated species use a mixture of non-polar hydrocarbons. The phylogeny of Ophrys shows that its evolution was marked by episodes of rapid diversification coinciding with shifts to different pollinator groups: from wasps to Eucera and consequently to Andrena and other bees. To gain further insights, we studied pollinator attraction in O. leochroma in the context of intra- and inter-generic pollinator shifts, radiation, and diversification in the genus Ophrys. Our model species, O. leochroma, is pollinated by Eucera kullenbergi males and lies in the phylogeny between the wasp and Andrena-pollinated species; therefore, it is a remarkable point to understand pollinator shifts. We collected surface extracts of attractive E. kullenbergi females and labellum extracts of O. leochroma and analyzed them by using gas chromatography with electroantennographic detection (GC-EAD) and gas chromatography coupled with mass spectrometry (GC-MS). We also performed field bioassays. Our results show that O. leochroma mimics the sex pheromone of its pollinator’s female by using aldehydes, alcohols, fatty acids, and non-polar compounds (hydrocarbons). Therefore, in terms of the chemistry of pollinator attraction, Eucera-pollinated Ophrys species might represent an intermediate stage between wasp- and Andrena-pollinated orchid species.  相似文献   

10.
Chemical defenses, repellents, and attractants are important shapers of species interactions. Chemical attractants could contribute to the divergence of coevolving plant-insect interactions, if pollinators are especially responsive to signals from the local plant species. We experimentally investigated patterns of daily floral scent production in three Lithophragma species (Saxifragaceae) that are geographically isolated and tested how scent divergence affects attraction of their major pollinator—the floral parasitic moth Greya politella (Prodoxidae). These moths oviposit through the corolla while simultaneously pollinating the flower with pollen adhering to the abdomen. The complex and species-specific floral scent profiles were emitted in higher amounts during the day, when these day-flying moths are active. There was minimal divergence found in petal color, which is another potential floral attractant. Female moths responded most strongly to scent from their local host species in olfactometer bioassays, and were more likely to oviposit in, and thereby pollinate, their local host species in no-choice trials. The results suggest that floral scent is an important attractant in this interaction. Local specialization in the pollinator response to a highly specific plant chemistry, thus, has the potential to contribute importantly to patterns of interaction specificity among coevolving plants and highly specialized pollinators.  相似文献   

11.
Plant-pollinator interactions significantly influence reproductive success (RS) and drive the evolution of pollination syndromes. In the context of RS, mainly the role of flower morphology is touched. The importance of nectar properties is less studied, despite its significance in pollination effectiveness. Therefore, the aim of this study was to test selection on flower morphology and nectar chemistry in the generalistic orchid Neottia ovata. In 2019–2020, we measured three floral displays and six flower traits, pollinaria removal (PR), female reproductive success (FRS), and determined the soil properties. The sugars and amino acids (AAs) were analyzed using the HPLC method. Data were analyzed using multiple statistical methods (boxplots, ternary plot, one-way ANOVA, Kruskal-Wallis test, and PCA). Variation of flower structure and nectar chemistry and their weak correlation with RS confirms the generalistic character of N. ovata. In particular populations, different traits were under selection. PR was high and similar in all populations in both years, while FRS was lower and varied among populations. Nectar was dominated by glucose, fructose, and included 28 AAs (Ala and Glu have the highest content). Sugars and AAs influenced mainly FRS. Among soil parameters, carbon and carbon:nitrogen ratio seems to be the most important in shaping flower structure and nectar chemistry.  相似文献   

12.
Most flowers offer nectar and/or pollen as a reward for pollinators. However, some plants are known to produce mostly fatty oil in the flowers, instead of nectar. This oil is exclusively collected by specialized oil-bees, the pollinators of the oil-plants. Little is known about chemical communication in this pollination system, especially how the bees find their hosts. We collected the floral and vegetative scent emitted by oil-producing Lysimachia punctata by dynamic headspace, and identified the compounds by gas chromatography coupled to mass spectrometry. Thirty-six compounds were detected in the scent samples, several of which were flower-specific. Pentane extracts of flowers and floral oil were tested on Macropis fulvipes in a biotest. Flower and oil extracts attracted the bees, and some of the compounds identified are seldom found in the floral scent of other plants; these may have been responsible for the attraction of the bees.  相似文献   

13.
Recent studies have shown the occurrence of plant derived pyrrolizidine alkaloids (PAs) in retail honeys and pollen loads, but little is known about how these compounds influence the fitness of foraging honey bees. In feeding experiments, we tested a mix of tertiary PAs and the corresponding N-oxides from Senecio vernalis, pure monocrotaline, and 1,2-dihydromonocrotaline in 50% (w/w) sucrose solutions. The bees were analyzed chemically to correlate the observed effects to the ingested amount of PAs. PA-N-oxides were deterrent at concentrations >0.2%. 1,2-Unsaturated tertiary PAs were toxic at high concentrations. The observed PAs mortality could be linked directly to the presence of the 1,2-double bond, a well established essential feature of PA cytotoxicity. In contrast, feeding experiments with 1,2-dihydromonocrotaline revealed no toxic effects. Levels of less than 50 μg 1,2-unsaturated tertiary PAs per individual adult bee were tolerated without negative effects. PA-N-oxides fed to bees were reduced partially to the corresponding tertiary PAs. Unlike some specialized insects, bees are not able to actively detoxify PAs through N-oxidation. To gain insight into how PAs are transmitted among bees, we tested for horizontal PA transfer (trophallaxis). Under laboratory conditions, up to 15% of an ingested PA diet was exchanged from bee to bee, disclosing a possible route for incorporation into the honey comb. In the absence of alternative nectar and pollen sources, PA-containing plants might exhibit a threat to vulnerable bee larvae, and this might affect the overall colony fitness.  相似文献   

14.
Volatiles emitted from unpollinated in situ flowers were collected from two male cultivars, ‘M33’, ‘M91’, and one female cultivar ‘Zesy002’ (Gold3) of kiwifruit (Actinidia chinensis var. chinensis). The samples were found to contain 48 compounds across the three cultivars with terpenes and straight chain alkenes dominating the headspace. Electrophysiological responses of honey bees (Apis mellifera) and bumble bees (Bombus terrestris) to the headspace of the kiwifruit flowers were recorded. Honey bees consistently responded to 11 floral volatiles from Gold3 pistillate flowers while bumble bees consistently responded to only five compounds from the pistillate flowers. Nonanal, 2-phenylethanol, 4-oxoisophorone and (3E,6E)-α-farnesene from pistillate flowers elicited responses from both bee species. Overall, honey bees were more sensitive to the straight chain hydrocarbons of the kiwifruit flowers than the bumble bees, which represented one of the main differences between the responses of the two bee species. The floral volatiles from staminate flowers of the male cultivars ‘M33’ and ‘M91’ varied greatly from those of the pistillate flowers of the female cultivar Gold3, with most of the bee active compounds significantly different from those in the Gold3 flower headspace. The total floral emissions of ‘M33’ flowers were significantly less than those of the Gold3 flowers, while the total floral emissions of the ‘M91’ flowers were significantly greater than those of the Gold3 flowers.  相似文献   

15.
Cyclocephaline scarabs are specialised scent-driven pollinators, implicated with the reproductive success of several Neotropical plant taxa. Night-blooming flowers pollinated by these beetles are thermogenic and release intense fragrances synchronized to pollinator activity. However, data on floral scent composition within such mutualistic interactions are scarce, and the identity of behaviorally active compounds involved is largely unknown. We performed GC-MS analyses of floral scents of four species of Annona (magnoliids, Annonaceae) and Caladium bicolor (monocots, Araceae), and demonstrated the chemical basis for the attraction of their effective pollinators. 4-Methyl-5-vinylthiazole, a nitrogen and sulphur-containing heterocyclic compound previously unreported in flowers, was found as a prominent constituent in all studied species. Field biotests confirmed that it is highly attractive to both male and female beetles of three species of the genus Cyclocephala, pollinators of the studied plant taxa. The origin of 4-methyl-5-vinylthiazole in plants might be associated with the metabolism of thiamine (vitamin B1), and we hypothesize that the presence of this compound in unrelated lineages of angiosperms is either linked to selective expression of a plesiomorphic biosynthetic pathway or to parallel evolution.  相似文献   

16.
Many pollinators specialize on a few plants as food sources and rely on flower scents to recognize their hosts. However, the specific compounds mediating this recognition are mostly unknown. We investigated the chemical basis of host location/recognition in the Campanula-specialist bee Chelostoma rapunculi using chemical, electrophysiological, and behavioral approaches. Our findings show that Ca. trachelium flowers emit a weak scent consisting of both widespread and rare (i.e., spiroacetals) volatiles. In electroantennographic analyses, the antennae of bees responded to aliphatics, terpenes, aromatics, and spiroacetals; however, the bioassays revealed a more complex response picture. Spiroacetals attracted host-naive bees, whereas spiroacetals together with aliphatics and terpenes were used for host finding by host-experienced bees. On the intrafloral level, different flower parts of Ca. trachelium showed differences in the absolute and relative amounts of scent, including spiroacetals. Scent from pollen-presenting flower parts elicited more feeding responses in host-naive bees as compared to a scentless control, whereas host-experienced bees responded more to the nectar-presenting parts. Our study demonstrates the occurrence of learning (i.e., change in the bee’s innate chemical search-image) after bees gain foraging experience on host flowers. We conclude that highly specific floral volatiles play a key role in host-flower recognition by this pollen-specialist bee, and discuss our findings into the broader context of host-recognition in oligolectic bees.  相似文献   

17.
Identity and Function of Scent Marks Deposited by Foraging Bumblebees   总被引:12,自引:0,他引:12  
Foraging bumblebees can detect scents left on flowers by previous bumblebee visitors and hence avoid flowers that have been depleted of nectar. Tarsal secretions are probably responsible for this repellent effect. The chemical components of the tarsal glands were analyzed by combined gas chromatography–mass spectrometry for three species of bumblebee, Bombus terrestris, B. lapidarius, and B. pascuorum. The hydrocarbons identified were similar for each species, although there were interspecific differences in the relative amounts of each compound present. The tarsal extracts of all three species comprised complex mixtures of long-chain alkanes and alkenes with between 21 and 29 carbon atoms. When B. terrestris tarsal extracts were applied to flowers and offered to foraging bumblebees of the three species, each exhibited a similar response; concentrated solutions produced a repellent effect, which decreased as the concentration declined. We bioassayed synthetic tricosane (one of the compounds found in the tarsal extracts) at a range of doses to determine whether it gave a similar response. Doses 10–12 ng/flower resulted in rejection by foraging B. lapidarius. Only when 10–14 ng was applied did the repellent effect fade. We bioassayed four other synthetic compounds found in tarsal extracts and a mixture of all five compounds to determine which were important in inducing a repellent effect in B. lapidarius workers. All induced repellency but the strength of the response varied; heneicosane was most repellent while tricosene was least repellent. These findings are discussed in relation to previous studies that found that tarsal scent marks were attractive rather than repellent.  相似文献   

18.
We investigated postpollination changes in fragrance composition and emission rates, as well as pollinator discrimination in hand-pollinated flower heads of two thistle species: Canada thistle (Cirsium arvense) and sandhill thistle (C. repandum). Following pollination, neither species emitted any novel compounds that could function as repellents. Scent emission rates declined in pollinated plants of both species by approximately 89% within 48 hr. This decline was evident in all 13 scent components of C. arvense. Apis mellifera, the dominant pollinator in the study population of C. arvense, was nearly three times more likely to visit an unpollinated rather than a pollinated flower head. A more complex pattern was observed for C. repandum, whose scent comprised 42 compounds. Quantities of aromatic and sesquiterpenoid volatiles declined after pollination, whereas two classes of scent compounds, fatty acid derivatives and monoterperpenoids, continued to be emitted. In C. repandum, discrimination against pollinated flower heads by Papilio palamedes (its primary pollinator) was not as marked. Unpollinated control plants of both species maintained moderate levels of scent production throughout this experiment, demonstrating that senescence and floral advertisement may be delayed until pollination has occurred. We expect postpollination changes in floral scent contribute to communication between plants with generalized pollinator spectra and their floral visitors. This study provides the first field study of such a phenomenon outside of orchids.  相似文献   

19.
Ant–plant interactions often are mediated by extrafloral nectar (EFN) composition that may influence plant visitation by ants. Over a 300 km range in the Indian Western Ghats, we investigated the correlation between the EFN composition of the myrmecophytic ant-plant Humboldtia brunonis (Fabaceae) and the number and species of ants visiting EFN. EFN composition varied among H. brunonis populations and between plant organs (floral bud vs. young leaf EFN). In general, EFN was rich in sugars with small quantities of amino acids, especially essential amino acids, and had moderate invertase activity. In experiments at the study sites with sugar and amino acid solutions and with leaf or floral bud EFN mimics, dominant EFN-feeding ants differentiated between solutions as well as between mimics. The castration parasite Crematogaster dohrni (northern study site) was the least selective and did not exhibit any clear feeding preferences, while the largely trophobiont-tending non-protective Myrmicaria brunnea (middle study site) preferred higher sucrose concentrations and certain essential/non-essential amino acid mixtures. The mutualistic Technomyrmex albipes (southern study site) preferred sucrose over glucose or fructose solutions and consumed the leaf EFN mimic to a greater extent than the floral bud EFN mimic. This young leaf EFN mimic had low sugar concentrations, the lowest viscosity and sugar:amino acid ratio, was rich in essential amino acids, and appeared ideally suited to the digestive physiology of T. albipes. This preference for young leaf EFN may explain the greater protection afforded to young leaves than to floral buds by T. albipes, and may also help to resolve ant–pollinator conflicts. The differential response of dominant ants to sugar, amino acids, or solution viscosity suggests that plants can fine-tune their interactions with local ants via EFN composition. Thus, EFN can mediate local partner-choice mechanisms in ant–plant interactions.  相似文献   

20.
Many plants attract their pollinators with floral scents, and these olfactory signals are especially important at night, when visual signals become inefficient. Dynastid scarab beetles are a speciose group of night-active pollinators, and several plants pollinated by these insects have methoxylated aromatic compounds in their scents. However, there is a large gap in our knowledge regarding the compounds responsible for beetle attraction. We used chemical analytical analyses to determine temporal patterns of scent emission and the composition of scent released from inflorescences of Philodendron selloum. The attractiveness of the main components in the scent to the dynastid scarab beetle Erioscelis emarginata, the exclusive pollinator of this plant, was assessed in field biotests. The amount of scent increased rapidly in the evening, and large amounts of scent were released during the activity time of the beetle pollinators. Inflorescences emitted a high number of compounds of different biosynthetic origin, among them both uncommon and also widespread flower scents. Methoxylated aromatic compounds dominated the scent, and 4-methoxystyrene, the most abundant compound, attracted E. emarginata beetles. Other compounds, such as (Z)-jasmone and possibly also the methoxylated aromatic compound 3,4-dimethoxystyrene increased the attractiveness of 4-methoxystyrene. Methoxylated aromatics, which are known from other dynastid pollinated plants as well, are important signals in many scarab beetles in a different context (e.g., pheromones), thus suggesting that these plants exploit pre-existing preferences of the beetles for attracting this group of insects as pollinators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号