首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
MnZn铁氧体烧结工艺研究   总被引:2,自引:0,他引:2  
对于MnZn铁氧体来说,要想获得高性能,必须采用平衡气氛烧结。本文就平衡气氛的基本原理及烧结方法作了简要论述,并结合实例说明了这种烧结方法。  相似文献   

2.
在钟罩式气氛烧结炉中烧结高导MnZn铁氧体材料.研究发现,掺入适量的CaCO3和Bi2O3能改善材料的磁性能.烧结过程中烧结温度的增高可以促进晶粒长大,有利于提高起始磁导率;烧结气氛对离子电价和晶相形成有着决定性影响,选择合适烧结工艺是制备优质MnZn铁氧体的关键.  相似文献   

3.
用氧化物法制备了Li0.35Zn0.3Fe2.35O4铁氧体材料,研究了烧结温度对材料微结构和磁性能的影响.结果表明,烧结温度越高,晶粒越大,矫顽力Hc越小.适宜的烧结温度可以提高密度db、饱和磁化强度Ms和降低铁磁共振线宽△H.在烧结温度为1160℃时,可以制备出高Ms、高Br/Bs,低Hc及低△H的LiZn铁氧体材料.  相似文献   

4.
用溶胶-凝胶法制备了Ni1-a-xZnxCuaFe2O4(0.15≤a<0.25,0.1≤x≤0.65)铁氧体超细粉。研究了材料的烧结特性,给出了烧结样品的起始磁导率μi、表观密度d、收缩率η、比饱和磁化强度σs等随烧结温度的变化。由烧结样品形貌分析SEM照片讨论了起始磁导率与晶粒尺寸等显微结构因素的关系,以及细晶粒和异常晶粒的生长过程。获得了在880±20℃烧结温度下μi>1000的良好性能。  相似文献   

5.
采用多段恒温烧结、湿压磁场成型制备了圆块状锶铁氧体,采用振动样品磁强计测试样品的磁性能,采用扫描电子显微镜观察样品的显微结构。实验结果表明,随着起始烧结温度的提高,锶铁氧体的饱和磁化强度显著提高,在起始烧结温度为1250℃时,达到最大值64.46 A.m2/kg,而矫顽力呈明显下降趋势;随着恒温时间延长,饱和磁化强度略有提升。因此,采用提高起始烧结温度与延长恒温时间的措施均能提高锶铁氧体磁性材料的饱和磁化强度。  相似文献   

6.
小型喇叭状铁氧体磁芯烧结匣钵的改进金学群(咸阳国营4390厂咸阳712021)1前言对需要一次烧结到尺寸要求的磁芯来说,窑具的选择和设计是非常重要的。因为容具的好坏会直接影响铁氧体磁芯的外形尺寸。那么,窑具好坏的标准是什么呢?笔者认为,在磁芯烧结收缩...  相似文献   

7.
采用传统的陶瓷工艺制备了分子式为Sr_(0.22)La_(0.38)Ca_(0.4)Fe_(0.14)~(2+)Fe_(11.62-δ)~(3+)Co_(0.24)O_(19)(缺铁量δ=1.36)的M型铁氧体,研究了预烧和烧结工艺对其微结构及磁特性的影响。研究表明,当预烧温度为1160℃和烧结温度为1170℃时,样品的B_r具有最大值455mT,此时对应H_(cj)=400kA/m,(BH)_(max)=40kJ/m~3;获得单一M相的最佳预烧温度为1240℃,这时预烧料有最大的σ_s和H_c分别是69.3 A×m~2/kg和334kA/m(4392Oe),烧结样品的H_(cj)能获得最高值为445kA/m,此时对应B_r=446mT,(BH)_(max)=38.5kJ/m~3。说明,在合适的配方及粉末细化工艺条件下才能获得最佳的B_r和H_(cj).  相似文献   

8.
微波铁氧体材料的晶粒细化   总被引:2,自引:0,他引:2  
给出了砂磨和热压YIG的实验结果以及快速烧结和热等静压YGdIGs的实验结果,并进行了分析讨论。获得了晶粒尺寸为2μm的YIG热压材料,其ΔHk为0.7-0.4kA/m,ΔH为2.8-3.9kA/m。  相似文献   

9.
采用常规的氧化物法制备了用于S波段移相器的低饱和磁化强度锂铁氧体材料.用扫描电镜观察了材料的显微结构.发现随Ti含量的增大和烧结温度的增高,材料的平均晶粒尺寸增大,气孔也增多.同时测量了材料的饱和磁化强度、矩形比、矫顽力、介电常数与介电损耗.结果表明,Ti含量的增大可以降低Li铁氧体的饱和磁化强度,其它性能也满足使用要求.  相似文献   

10.
高性能功率电感要求NiZn铁氧体磁芯具有优良的耐热冲击能力和较高的直流叠加性能。通过氧化物法制备了两种不同晶粒尺寸的NiZn铁氧体材料NZ-A和NZ-B,分别制作6mm和2mm尺寸的电感磁芯,并分别对比一般耐热型NiZn铁氧体材料和高B_s型NiZn铁氧体材料。实验结果证明不同尺寸磁芯所用材料的热冲击的失效模式不同。为满足不同尺寸磁芯耐热冲击性能的需求,所设计材料的晶粒尺寸也应不同。  相似文献   

11.
用固相反应法(氧化物法)制备了成分为Ni1-a-xZnxCuaFe2-(O4(0.15≤a<0.25,0.1≤x≤0.65)的 NiCuZn铁氧体超细粉.研究了材料的烧结特性,给出了烧结样品的起始磁导率μi、品质因数Q、表观密度d、预烧、烧结收缩率η等随烧结温度的变化.由收缩率、相对比饱和磁化强度σsp/σs的烧结温度曲线讨论了致密化过程与固相反应的关系.由烧结样品形貌分析SEM照片讨论了起始磁导率与晶粒尺寸等显微结构因素的关系,以及细晶粒和异常晶粒的生长过程.获得了在870±10℃烧结温度下μi>835±10%、Q>140、比温度系数α<1×10-6/℃、居里温度TC=130℃、电阻率ρ>1012Ω·cm、比损耗因子tgδ/μ<8.4×10-6的良好性能.其μQ=12.3×104,是Sol-Gel法的2倍.  相似文献   

12.
采用固相反应法制备了NiCuZn铁氧体,研究了V2O5/MoO3不同掺杂量对材料电磁性能的影响以及V2O5/MoO3这两种物质掺杂效果的对比。结果表明,在900℃烧结条件下,随V2O5/MoO3掺杂量的增多,样品起始磁导率呈现出先增大后减小的规律(掺杂0.25wt%V2O5/0.5wt%MoO3时出现磁导率峰值)。对比两种掺杂物质,发现掺MoO3样品的起始磁导率和饱和磁化强度略好于掺V2O5的样品;掺V2O5样品的品质因数和矫顽力好于掺MoO3的样品。  相似文献   

13.
采用溶胶-凝胶法在玻璃衬底上制备了钴铁氧体CoxFe3―xO4(x=0.2~0.8)薄膜。分别用振动样品磁强计及X射线衍射仪对样品的磁性和结构进行了测量与分析。结果表明,随Co2 含量增加,样品中的尖晶石相衍射峰逐渐增强,至x=0.8时为单一的尖晶石结构。高Co2 含量(x>0.7)样品的饱和磁化强度和矫顽力随退火温度的升高呈上升趋势,630℃退火Co0.8Fe2.2O4薄膜矫顽力达156kA/m。Co2 含量的增加还可使晶粒细化。当Co2 含量x=0.8时,可同时获得好的磁性能及小的晶粒。  相似文献   

14.
Bi2O3-MoO3复合掺杂对NiCuZn铁氧体烧结特性和磁性能的影响   总被引:4,自引:0,他引:4  
研究了采用Bi2O3-MoO3复合掺杂的方式来降低NiCuZn铁氧体的烧结温度及提高电磁性能.结果表明:适量的Bi2O3-MoO3复合掺杂,可在900℃烧结,起始磁导率μi>800,适用于高感量、小尺寸片式感性器件的制备.  相似文献   

15.
预烧对锰锌铁氧体预烧相及烧结显微结构的影响   总被引:8,自引:0,他引:8  
采用传统的陶瓷工艺制备了Mn-Zn铁氧体.用X射线衍射(XRD)仪和扫描电子显微镜(SEM)研究了预烧温度对铁氧体预烧相及烧结显微结构的影响.结果表明,在840~1000℃预烧相以(-Fe2O3为主.随着预烧温度的升高,(-Fe2O3的含量逐渐增加,而ZnFe2O4和Mn2O3的含量逐渐减少,Mn3O4固溶于ZnFe2O4形成铁锰锌固溶体,且其含量随着预烧温度的升高呈增大趋势.预烧温度对Mn-Zn铁氧体烧结显微结构和功率损耗有较大的影响.适宜的预烧温度可以获得分布均匀、细小的晶粒及低的功耗,低于或高于此预烧温度,都将造成烧结Mn-Zn铁氧体显微结构的恶化和功率损耗的升高.实验结果表明,对于1340℃的烧结温度,最佳预烧温度为960℃.  相似文献   

16.
以不同工艺生产的NiO为原材料,制备了高频低磁导率NiCuZn铁氧体.用扫描电镜(SEM)分析原材料NiO的微观形态的差异,用X射线衍射(XRD)研究预烧后固相反应的进行状况,考察了不同NiO材料对低温烧结材料高频Q值的影响.研究发现,低温烧结条件下,高活性的NiO原材料能有效提高低磁导率NiCuZn铁氧体的高频Q值.  相似文献   

17.
采用氧化物法制备了NiCuZn铁氧体材料,研究了Bi2O3掺杂对其旋磁性能的影响。结果表明,在1~4wt%的范围内,随着Bi2O3含量的提高,铁磁共振线宽△H和介电损耗角正切tgδε都呈现出先减小后上升的趋势;并且在掺杂量为3wt%、烧结温度为900℃时,△H15kA/m、tgδε=6.5×10-4、Ms300kA/m,可用于低温共烧旋磁铁氧体基板的制备。  相似文献   

18.
复合添加对锂铁氧体烧结特性和电磁性能的影响   总被引:1,自引:1,他引:1  
用传统的陶瓷工艺制备Li铁氧体材料.研究了复合添加Bi2O3等多种添加剂的作用.结果表明,添加适量超细球状Bi2O3粉可有效抑制Li的挥发,同时引入Zn2 、Ti4 、Mg2 、Mn2 等金属离子可将锂铁氧体的烧结温度降低至900℃以下,从而实现与银内电极的低温共烧.测试分析表明复合添加上述金属离子的锂铁氧体材料性能显著提高.起始磁导率μi =35~250,温度系数αμ(10kHz)5~7×10-6/℃,截止频率fc=12~86MHz,电阻率ρ>109Ω·m,居里温度TC>100℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号