首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
以二氧化锰(MnO2)为氧化剂,通过乳液聚合法室温条件下制备了十二烷基苯磺酸钠(SDBS)、十二烷基磺酸钠(SDS)、曲拉通(T-X100)掺杂的聚苯胺(PANI-SDBS、PANI-SDS、PANI-T-X100)。并采用扫描电子显微镜(SEM)、傅立叶变换红外光谱(FT-IR)以及X射线衍射(XRD)对其结构和形貌进行了表征。以掺杂PANI为活性物质制备电极,1.0mol/L H2SO4水溶液为电解液组装超级电容器,用循环伏安法(CV)、电化学阻抗(EIS)和恒电流充放电技术分别测试了掺杂PANI电化学性能。结果表明,以PANI-SDBS、PANI-T-X100为电极材料的超级电容器在5mA/cm2放电电流下的比电容为393、339F/g,均高于未掺杂PANI的比电容(228F/g),1000次循环后的比电容仍高于未掺杂PANI。其中PANI-SDBS纤维纳米材料具有较高的比容量和良好的循环性能。  相似文献   

2.
以Fe(NO3)3·9H2O、H3PO4和稀氨水为原料,用控制结晶法制备FePO4·x H2O,研究了表面活性剂CTAB和PEG对FePO4·x H2O材料的影响。再以Li2CO3、蔗糖和高温烧结后的FePO4为原料用碳热还原法制备了纳米LiFePO4/C复合材料。用SEM、XRD、充放电测试、循环伏安测试等手段对该复合材料进行表征,研究其电化学性能。结果表明:添加表面活性剂制备的LiFePO4/C复合材料纳米颗粒呈球形且团聚减少,提高了材料的倍率性能和循环性能,其中添加CTAB制备的LiFePO4/C材料的颗粒最小、分散性较好,0.1C时的首次放电比容量为159.8 m Ah·g-1,10C倍率下比容量仍达到132.4 m Ah·g-1。  相似文献   

3.
以二氧化锰(MnO2)为氧化剂,通过乳液聚合法室温条件下制备了十二烷基苯磺酸钠(SDBS)、十二烷基磺酸钠(SDS)、曲拉通(T-X100)掺杂的聚苯胺(PANI-SDBS、PANI-SDS、PANI-T-X100)。并采用扫描电子显微镜(SEM)、傅立叶变换红外光谱(FT-IR)以及X射线衍射(XRD)对其结构和形貌进行了表征。以掺杂PANI为活性物质制备电极,1.0mol/LH2SO4水溶液 为 电 解 液 组 装 超 级 电 容 器,用 循 环 伏 安 法(CV)、电化学阻抗(EIS)和恒电流充放电技术分别测试了掺杂PANI电化 学性能。结果表明,以PANI-SDBS、PANI-T-X100为 电 极 材 料 的 超 级 电 容 器 在5mA/cm2放电电流下的比电容为393、339F/g,均高于未掺杂PANI的比电容(228F/g),1000次循环后的比电容仍高于未掺杂PANI。其中PANI-SDBS纤维纳米材料具有较高的比容量和良好的循环性能。  相似文献   

4.
景磊  赵东林  孙杰  高云雷  谢卫刚  沈曾民 《功能材料》2012,43(22):3084-3087
采用原位聚合法,以过硫酸铵为氧化剂,在比表面积为2945cm2/g的中间相沥青基活性炭微球(AMCMB)表面引发苯胺聚合,制备中间相沥青基活性炭微球/聚苯胺复合材料(AMCMB/PANI)。利用扫描电镜、X射线衍射和傅里叶变换-红外光谱分析,考察其微观结构和表面形貌;通过恒流充放电、循环伏安及交流阻抗测试,研究其在6mol/L KOH溶液中的电化学性能。在电流密度为0.02A/g时,AMCMB/PANI电极的比容量为387.72F/g,与AMCMB电极的比容量相比,提高了57.46%,说明少量聚苯胺的加入可以显著地提高电极材料的比容量;当电流密度增大1000倍时,AMCMB/PANI电极的比容量为157.68F/g,表现出好的大电流充放电能力。  相似文献   

5.
采用化学氧化法制得氧化石墨烯(GO),再用NaBH4还原得到石墨烯(GN);以二氧化锰为氧化剂,室温下通过化学氧化聚合法制备了聚苯胺/石墨烯复合材料(PANI/GN)。采用扫描电子显微镜(SEM)及X-射线衍射(XRD)对其结构和形貌进行了表征。以PANI/GN为活性物质制备电极,1.0mol/L H2SO4水溶液为电解液组装超级电容器,用循环伏安法(CV)和恒电流充放电技术分别测试了PANI/GN电化学性能,在0.1A/g的电流密度下的比容量为468.5F/g,经过1000次连续充放电,电容保持率为84.9%。与PANI、GN单一材料相比,PANI/GN复合物具有较高的比电容和很好的循环稳定性。  相似文献   

6.
采用原位聚合法制备了不同聚乙烯醇(PVA)表面活性剂添加量的聚苯胺(PANI)以及氧化石墨烯/聚苯胺(GO/PANI)复合材料。借助扫描电镜、X射线衍射、傅立叶变换红外光谱分析等表征手段对材料的物相组成、微观结构和形貌进行了分析。将材料压制电极并组装成扣式电池,利用循环伏安曲线和电化学阻抗谱对材料进行电化学性能检测。探讨了表面活性剂PVA的添加量对PANI以及GO/PANI的微观结构、形貌、电导率及电化学性能的影响。结果表明,当PVA与苯胺(AN)的摩尔比为0.000075时,PVA的引入明显降低了PANI及GO/PANI复合材料的团聚,PVA75/PANI的电导率比纯PANI的电导率提高了2倍,GO/PVA75/PANI复合材料的电导率比未加PVA的GO/PANI复合材料提高了5倍。当PVA与AN的摩尔比为0.000075时,PVA75/PANI和GO/PVA75/PANI复合材料的比电容分别达到986和1 223F/g。  相似文献   

7.
通过电化学沉积法制备得到聚苯胺/炭微球(PANI/CMS)复合电极材料,通过场发射扫描电子显微镜和红外光谱对PANI/CMS复合材料进行形貌和结构表征。并采用循环伏安、恒电流充放电、电化学阻抗谱及循环寿命测试等技术考察其电化学行为。结果表明:PANI均匀包覆于CMSs表面;在电流密度为1 A·g~(-1)时,复合材料的比电容达到206 F·g~(-1);PANI/CM S复合材料表现出优异的电化学稳定性。说明PANI/CMS复合材料有望作为电极材料用于超级电容器。  相似文献   

8.
原位聚合制备PANI/GO复合材料及其电化学性能研究   总被引:1,自引:0,他引:1  
阮艳莉  王坤  齐平平  韩煦 《功能材料》2015,(2):2100-2104
利用原位化学氧化聚合的方法制备了聚苯胺/氧化石墨烯(PANI/GO)复合材料。通过X射线衍射(XRD)、扫描电镜(SEM)及红外光谱(IR)等方法对其结构和形貌进行了表征。利用自制的PANI/GO复合材料作为电极材料分别组装了超级电容器及锂离子电池,并对其电化学性能进行了测试。结果表明,GO在不同的电化学器件中均能够明显改善PANI的电化学性能。以PANI/GO作为超级电容器电极材料,放电时其比电容达413.28F/g,高于纯PANI的322.56F/g,1 000次循环后,容量保持率为70%。以PANI/GO作为锂离子电池正极材料,0.1C下首次放电比容量达104.4mAh/g,50次循环后,容量未见衰减。  相似文献   

9.
首先通过原位聚合的方法制备聚苯胺(PANI)包覆纤维素纳米晶(CNC)(CNC@PANI)纳米复合物,进而采用共混法制备CNC@PANI与rGO的复合电极材料(CNC@PANI/rGO)。研究不同苯胺与CNC的用量比对所得复合电极材料的结构形貌和电化学性能的影响。采用扫描电镜、X射线衍射、红外光谱以及电化学工作站等测试手段对制备的复合电极材料的结构形貌、电化学性能进行分析表征。结果表明,PANI成功地包覆在CNC的表面,且PANI通过在CNC表面的包覆,可明显改善其分散性和比表面积,以及与石墨烯的复合效果。CNC@PANI-1/rGO复合电极材料在20mV/s扫描速率下的比电容可高达309F/g,远远高于PANI/rGO复合电极材料的155F/g。  相似文献   

10.
首先通过原位聚合的方法制备聚苯胺(PANI)包覆纤维素纳米晶(CNC)(CNC@PANI)纳米复合物,进而采用共混法制备CNC@PANI与rGO的复合电极材料(CNC@PANI/rGO)。研究不同苯胺与CNC的用量比对所得复合电极材料的结构形貌和电化学性能的影响。采用扫描电镜、X射线衍射、红外光谱以及电化学工作站等测试手段对制备的复合电极材料的结构形貌、电化学性能进行分析表征。结果表明,PANI成功地包覆在CNC的表面,且PANI通过在CNC表面的包覆,可明显改善其分散性和比表面积,以及与石墨烯的复合效果。CNC@PANI-1/rGO复合电极材料在20mV/s扫描速率下的比电容可高达309F/g,远远高于PANI/rGO复合电极材料的155F/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号