首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Chemokine production by human retinal pigment epithelium (HRPE) cells is believed to play an important role in ocular inflammation and immune responses. In our previous studies, we demonstrated that glycated human serum albumin (GHSA) strongly stimulates HRPE cells and human corneal keratocytes to produce chemokines. In the present study, we further examined the effects of GHSA on TNF-alpha- and IL-1 beta-induced HRPE IL-8 and monocyte chemoattractant protein (MCP)-1 gene expression and protein secretion in HRPE. At maximally effective concentrations, GHSA (2000 micrograms/ml) potentiated TNF-alpha (20 ng/ml)-stimulated HRPE IL-8 secretion approximately 7-fold. Consistent with the above observations were the time- and dose-dependent increases in the steady-state IL-8 mRNA after coadministration with these two factors, although the half-life of IL-8 mRNA (30 minutes) was not altered by GHSA. In contrast to IL-8, the TNF-alpha-induced HRPE MCP-1 gene expression was only slightly enhanced by GHSA. Moreover, potentiation of HRPE IL-8 generation by GHSA appeared to be selective for TNF-alpha because, under similar conditions, GHSA was unable to enhance the IL-1 beta-stimulated IL-8 gene expression and protein secretion. The IL-1 beta-stimulated HRPE MCP-1 production was also unchanged by GHSA. Collectively, these results suggest specific potentiation of TNF-alpha-induced HRPE IL-8 by human serum albumin that has been glycated either during circulation or locally within tissue. This interaction may be relevant to a variety of ocular diseases involving breakdown of the blood-retinal barrier.  相似文献   

3.
Human retinal pigment epithelial (RPE) cells secrete chemokines, interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1) in response to pro-inflammatory cytokines. In this study we (1) examined the efficiency of human RPE IL-8 and MCP-1 secretion, (2) determined the amount of neutrophil and monocyte chemotactic activity in human RPE cell conditioned media and cell extracts that is attributable to IL-8 and MCP-1, respectively, and (3) assessed the sensitivity of immunohistochemistry and in situ hybridization for detecting chemokine production by cytokine-stimulated human RPE cells. Conditioned media and extracts from human RPE cells stimulated with various physiologic concentrations of interleukin-1 beta (IL-1 beta) (0.2-20 ng ml-1), tumor necrosis factor (TNF-alpha) (0.2-20 ng ml-1) or interferon-gamma (IFN-gamma) (10-1000 U ml-1) were examined to compare secreted and cell associated levels of IL-8 and MCP-1 at various time points up to 24 hr. ELISA demonstrated that IL-8 and MCP-1 are both efficiently secreted by pro-inflammatory cytokine treated human RPE cells. Substantial dose- and time-dependent RPE secretion of IL-8 was observed following stimulation with IL-1 beta or TNF-alpha, but cell associated IL-8 was detectable only after high dose (20 ng ml-1) IL-1 beta stimulation and comprised less than 1% of the total IL-8 induced. Dose- and time-dependent RPE cell MCP-1 secretion was also observed following IL-1 beta > TNF-alpha > IFN-gamma stimulation, with an average of 4% of the total MCP-1 retained within RPE. Bioassays demonstrated neutrophil and monocyte chemotactic activity in conditioned media from stimulated RPE cells, but not in human RPE cell extracts. Inhibition of conditioned media-induced chemotaxis by specific anti-IL-8 or anti-MCP-1 antibodies demonstrated that IL-8 and MCP-1 were responsible for the majority of HRPE-derived neutrophil (> 60%) and monocyte (53-57%) chemotactic activity, respectively. Using in situ hybridization IL-8 mRNA was readily detected within IL-1 beta > TNF-alpha stimulated RPE cells and MCP-1 mRNA easily visualized within IL-1 beta > TNF-alpha > or IFN-gamma stimulated cells. Immunohistochemistry to detect IL-8 was positive only in RPE cells exposed to high dose IL-1 beta (20 ng ml-1) for 8 or 24 hr and was weak. Immunohistochemical staining for MCP-1 in RPE cells was more intense and was visualized within RPE cells stimulated with IL-beta, TNF-alpha, or IFN-gamma. This study demonstrates that: (1) RPE cells efficiently secrete IL-8 and MCP-1 upon stimulation with pro-inflammatory cytokines; (2) secreted IL-8 and MCP-1 account for the majority of human RPE neutrophil and monocyte chemotactic activity; (3) in situ hybridization readily detects IL-8 and MCP-1 mRNA in cytokine stimulated RPE cells; and (4) immunohistochemistry demonstrates cell-associated MCP-1 in cytokine stimulated RPE cells, but only minimal cell-associated IL-8.  相似文献   

4.
This study analyzes the effects of the T cell cytokines IL-4 and IFN-gamma on the spontaneous and stimulated production of IL-8, MCP-1, IL-1 receptor antagonist (IL-1ra), and PGE by synoviocytes from rheumatoid arthritis (RA) and osteoarthritis (OA) patients. Cells from both sources constitutively released IL-8 and MCP-1, but no IL-1ra or PGE. Stimulation with IL-1 beta or TNF-alpha massively increased chemokine production and induced the generation of PGE and low amounts of IL-1ra. The constitutive or cytokine-stimulated release of IL-8 was inhibited by IFN-gamma, but not by IL-4. The constitutive or IL-1 beta-stimulated release of MCP-1, by contrast, was markedly enhanced by IL-4 and IFN-gamma. Both cytokines, however, had only borderline effects on the release stimulated by TNF-alpha. The yield of IL-1ra was strongly enhanced by IFN-gamma in all cases, whereas the effect of IL-4 was pronounced only in IL-1 beta-stimulated OA synoviocytes. IL-4, on the other hand, markedly decreased the release of PGE, which was less susceptible to IFN-gamma. The observed effects on chemokines, IL-1ra expression, and PGE release by synoviocytes suggest that IFN-gamma and IL-4 are important regulatory elements in the inflamed synovium and may exert anti-inflammatory effects.  相似文献   

5.
IL-17 is a novel T cell-derived cytokine that can regulate the functions of a variety of cell types. In this study, we investigated whether hapten-specific T cells isolated from patients with allergic contact dermatitis (ACD) to nickel produce IL-17 and the effects of IL-17 alone or in combination with IFN-gamma or TNF-alpha on the immune activation of keratinocytes. Skin affected with ACD to nickel and skin-derived, nickel-specific CD4+ T cell lines expressed IFN-gamma, TNF-alpha, and IL-17 mRNAs. Four of seven nickel-specific CD4+ T cell clones positive for the skin-homing receptor, cutaneous lymphocyte-associated Ag, were shown to corelease IL-17, IFN-gamma, and TNF-alpha. In contrast, two nickel-specific CD8+ T cell clones failed to synthesize IL-17. Normal human keratinocytes were found to express constitutively the IL-17 receptor gene. IL-17 specifically and dose-dependently augmented IFN-gamma-induced ICAM-1 expression on keratinocytes at both the mRNA and the protein level, whereas HLA-DR, MHC class I, and CD40 levels were not modulated by IL-17. On the other hand, IL-17 alone did not affect ICAM-1 or enhance TNF-alpha-induced ICAM-1. In addition, IL-17, both directly and in synergism with IFN-gamma and/or TNF-alpha, stimulated synthesis and release of IL-8 by keratinocytes. In contrast, IFN-gamma- and TNF-alpha-induced production of RANTES was markedly inhibited by IL-17, and the synthesis of macrophage chemotactic protein 1 was not changed. Taken together, the results suggest that IL-17 is an important player of T cell-mediated skin immune responses, with synergistic or antagonist effects on IFN-gamma- and TNF-alpha-stimulated keratinocyte activation.  相似文献   

6.
Multiple sclerosis (MS) is presumed to be a T-cell mediated chronic inflammatory disease of the central nervous system. Investigators previously demonstrated increased IFN-gamma (pro-inflammatory) and IL-10 (counterregulatory anti-inflammatory) in MS. The balance of pro-inflammatory and counterregulatory anti-inflammatory cytokines may be important in the stabilization of disease activity. Purified CD4+ and CD8+ T cells from patients with clinically definite, stable relapsing MS (RRMS) were stimulated by anti-CD3 mAb or Con A for 48 hours and cytokine supernatants analysed for production of IL-2, IL-6, IFN-gamma, TNF-alpha (potential pro-inflammatory) and IL-4, IL-10, and TGF-beta (potential counterregulatory anti-inflammatory). Con A activated CD4+ and CD8+ T cell proinflammatory cytokine IL-2 secretion, CD4+ T cell IL-6 secretion, CD4+ and CD8+ T cell TNF-alpha secretion and CD8+ T cell IFN-gamma secretion was decreased significantly in RRMS subjects compared to controls. CD3 activated CD4+ and CD8+ T cell IL-6 secretion and CD4+ T cell TNF-alpha secretion was significantly decreased in MS subjects compared to controls. In contrast, there was increased CD3-induced IFN-gamma in both CD4+ and CD8+ T cells and counterregulatory anti-inflammatory CD3-induced IL-10 secretion in CD4+ T cells in RRMS compared to controls. These data suggest that an equilibrium of a pro-inflammatory (IFN-gamma) and a counterregulatory anti-inflammatory (IL-10) cytokine may define stable clinically definite early RRMS.  相似文献   

7.
Interleukin-6 (IL-6) is thought to be a major mediator of the host's defense against infection, and it regulates immune responses in inflamed tissue. In this study, we investigated the regulation of IL-6 production in human gingival fibroblasts (HGF) and human periodontal ligament fibroblasts (HPLF). Pro-inflammatory cytokines including interleukin (IL)-1 alpha, IL-1 beta and tumor necrosis factor (TNF)-alpha stimulated IL-6 production in HGF and HPLF in a time- and dose-dependent manner. This IL-1 alpha, IL-1 beta, or TNF-alpha-induced IL-6 production was enhanced, but the cAMP accumulation they induced was inhibited by the addition of indomethacin. This result suggests that endogenous prostaglandin E2 (PGE2) partially inhibits IL-1 or TNF-alpha-induced IL-6 production and that the enhancement of IL-6 production by IL-1 or TNF-alpha may not be caused through endogenous PGE2-induced cAMP-dependent pathway. Dexamethasone (DEX), a glucocorticoid which is a inhibitor of nuclear factor kappa B (NF-kappa B activation, markedly inhibited IL-1 (alpha or beta) or TNF-alpha-induced IL-6 production; so this production may be partially mediated through NF-kappa B. IL-1 (alpha or beta) and TNF-alpha enhanced IL-6 production synergistically. IL-6 production in HGF or HPLF stimulated with IL-1 beta was augmented by the addition of interferon (IFN)-gamma, but was slightly suppressed by the addition of IL-4. Endogenous IL-6 enhanced IL-1 (alpha or beta)-induced IL-6 production in the presence of IL-6 soluble receptor (IL-6sR). Accordingly, in inflamed periodontal tissues, gingival fibroblasts and periodontal ligament fibroblasts stimulated with pro-inflammatory cytokines such as IL-1 or TNF-alpha, may produce IL-6, and this production can be differentially modulated by endogenous PGE2, IL-6sR, T cell-derived cytokines such as IFN-gamma or IL-4, and glucocorticoids.  相似文献   

8.
We investigated the effects of murine rTNF-alpha, human rIL-1 beta, and rat rIFN-gamma in various concentrations and/or combinations on inducible nitric oxide (NO) production in primary cultures of rat aortic endothelial cells. Northern blot analysis of total RNA from induced and control cultures using the cloned mouse macrophage gene of inducible NO synthase as probe as well as polymerase chain reaction using a specific primer sequence gave a positive signal for activated cells only. A RNA approximately 4.4 kb of length similar to the inducible form of NO synthase in macrophages was labeled. The concentration of nitrite as a stable reaction product of NO in culture supernatants was determined 24 h after incubation with the various cytokines. IL-1 beta alone (40 to 1000 U/ml) induced formation of increasing amounts of nitrite with increasing concentrations of IL-1 beta present. Neither TNF-alpha alone (10 to 2000 U/ml) nor IFN-gamma alone 25 to 500 U/ml) showed significant effects on nitrite production. Simultaneous incubation with low concentrations of TNF-alpha (< or = 100 U/ml) and IL-1 beta abrogated the induction effect of IL-1 beta. Conversely, addition of high concentrations of TNF-alpha (> or = 500 U/ml) led to near maximal levels of nitrite formation even at lowest IL-1 beta concentrations (40 U/ml). In addition, simultaneous incubation of endothelial cells with IFN-gamma plus IL-1 beta and/or TNF-alpha led to near maximal NO production of endothelial cells, even at lowest IFN-gamma concentrations (25 U/ml). We hypothesize that the regulating effect of TNF-alpha may in vivo help to prevent local inflammatory responses from spreading to intact sites.  相似文献   

9.
To understand the pathogenesis of vasculitides, we analyzed how cytokine stimulation of HUVEC in vitro activates the cytotoxic capacity of polymorphonuclear (PMN) granulocytes. IL-1beta, IFN-gamma, or TNF-alpha caused highly significant dose and time-dependent HUVEC injury. TNF-alpha-treated HUVEC activated the PMN by means of phospholipase C-related event, since coincubations conferred PMN to react with a rise of cytosolic calcium concentrations, [Ca2+]i. Ab blockade of ICAM-1 on HUVEC inhibited 50 to 70% of the injury induced by these cytokines, whereas a mAb to E-selectin reduced 45 to 65% of IL-1beta- and TNF-alpha-, but not IFN-gamma-induced cytotoxicity. The role of nitric oxide (NO) was of significance since injury induced by each cytokine was reduced by 60 to 87% by specific NO-synthase inhibitors, as well as by scavenging extracellular NO by oxyhemoglobin. In contrast, injury induced by TNF-alpha was inhibited by neither superoxide dismutase or catalase, alpha1-antitrypsin, alpha2-macroglobulin, nor the platelet-activating factor receptor antagonist WEB-2086. Moreover, PMN from a patient with chronic granulomatous disease were fully capable of mediating cytotoxicity. The possibility that IL-8, produced by HUVEC in response to TNF-alpha, mediated activation of PMN was not corroborated since addition of an IL-8-blocking mAb did not modify HUVEC injury. Nonetheless, the IL-8 mAb (but not WEB-2086) blocked the rise of [Ca2+]i. Thus, in this in vitro model of vasculitis, the effect of IL-1beta, IFN-gamma, and TNF-alpha as promotors of cytokine-mediated neutrophil-dependent injury to HUVEC is a process dependent on expression of adhesion molecules and probably associated with NO produced in the system.  相似文献   

10.
11.
12.
Resistance of adult C57BL/6 mice to severe Cryptosporidium parvum infection is dependent on CD4+alpha beta+ TCR lymphocytes. In this study, we demonstrated that treatment with anti-IFN-gamma mAb extended oocyst excretion 18 days longer, and anti-IL-4 mAb extended oocyst excretion at least 11 days longer than isotype control mAb treatment. Analysis of the specific activity of anti-IFN-gamma mAb present in treated mouse sera suggested that IFN-gamma may have a limited role in the resolution phase of infection. Changes were also documented in numbers of CD4+alpha beta+IFN-gamma+ and CD4+alpha beta+IL-4+ lymphocytes in Peyer's patches and intraepithelium of adult C57BL/6 mice during resolution of C. parvum infection. Resistance to initial severe infection was associated with CD4+alpha beta+IFN-gamma+ lymphocytes, and eventual resolution of infection was associated with CD4+alpha beta+IL-4+ lymphocytes. Analysis of cytokine expression following in vitro stimulation with C. parvum Ags during resolution of infection demonstrated consistent increases in CD4+alpha beta+IL-4+ lymphocytes, but not CD4+alpha beta+IFN-gamma+ lymphocytes. The relevance of CD4+alpha beta+IL-4+ lymphocytes in protection against C. parvum was then evaluated in C57BL/6 IL-4 gene knockout mice (IL-4(-/-)). Adult IL-4(-/-) mice excreted oocysts in feces approximately 23 days longer than IL-4(+/+) mice. Further, anti-IFN-gamma mAb treatment increased the severity and the duration of infection in IL-4(-/-) mice compared with those in IL-4(+/+) mice. Together, the data demonstrated that IFN-gamma was important in the control of severity of infection, and either IFN-gamma or IL-4 accelerated termination of infection. However, neither IL-4 nor IFN-gamma was required for the final clearance of infection from the intestinal tract of adult mice.  相似文献   

13.
1. Tumour necrosis factor-alpha (TNF-alpha) is implicated in the pathogenesis of many pulmonary and airway diseases. TNF-alpha stimulation may release interleukin-8 (IL-8) in airways mediated via an increase in intracellular oxidant stress. In the present study, we have assessed leukosequestration and IL-8 release in the airways in response to intratracheal administration of human recombinant TNF-alpha, and examined the modulatory role of endogenous NO by pretreatment with a NO synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME). 2. TNF-alpha (10(2)-10(-4) u) was administered intratracheally in male guinea-pigs which were anaesthetized with urethane and were ventilated artificially. TNF-alpha induced a time- and dose-related increase in neutrophil numbers and a concomitant increase in human IL-8 equivalent level retrieved from bronchoalveolar lavage (BAL) with the peak effect at 10(3) u at 6 h of TNF-alpha injection (late phase). Intratracheal administration of recombinant human (rh)IL-8 (0.025, 0.25, 2.5 ng) producing a similar range of human IL-8 equivalent levels in BAL as measured in our results induced neutrophil recovery in BAL fluid to a similar extent. Administration of anti-IL-8 antibody prevented the late phase of neutrophil recruitment induced by TNF-alpha or rhIL-8. 3. Pretreatment with L-NAME significantly enhanced the TNF-alpha (10(3) u)-induced neutrophil recruitment and human IL-8 equivalents production at 6 h, but not at 1 h of TNF-alpha administration (early phase). L-Arginine reversed the responses to L-NAME. Pretreatment with 0.2% DMSO (i.v.) significantly inhibited TNF-alpha-induced neutrophil recruitment and human IL-8 equivalents release both in the early and late phase of the responses. Pretreatment with DMSO also inhibited the enhancement effect of L-NAME on the late phase of TNF-alpha-induced responses. DMSO failed to modify exogenous rhIL-8-induced neutrophil recruitment. Neither L-NAME nor DMSO alone induced any significant change in neutrophil numbers or human IL-8 equivalent level in BAL fluid. 4. Neutrophil depletion by cyclophosphamide pretreatment failed to modify TNF-alpha-induced human IL-8 equivalent release. 5. The expression of beta 2-integrin, CD11b/CD18 on neutrophils was increased only in the late but not early phase of TNF-alpha stimulation. L-NAME failed to modify these responses. 6. In conclusion, we demonstrated that NO may be an important endogenous inhibitor of TNF-alpha-induced leukocyte chemotaxis via inhibition of IL-8 production. Thus, the production of NO in airway inflammatory diseases may play a negative feedback role in self-limiting the magnitude of inflammatory responses.  相似文献   

14.
Interleukin-1 (IL-1) and tumor necrosis factor (TNF), two pleiotropic cytokines produced in inflammatory processes, inhibit bone matrix biosynthesis and stimulate prostanoid formation in osteoblasts. In the present study, the importance of prostaglandin formation in IL-1 and TNF-induced inhibition of osteocalcin and type I collagen formation has been examined. In the human osteoblastic cell line MG-63, IL-1 alpha (10-1000 pg/ml), IL-1 beta (3-300 pg/ml) and TNF-alpha (1-30 ng/ml) stimulated prostaglandin E2 (PGE2) formation and inhibited 1,25(OH)2-vitamin D3-induced osteocalcin biosynthesis as well as basal production of type I collagen. Addition of PGE2 or increasing the endogenous formation of PGE2 by treating the cells with arachidonic acid, bradykinin, Lys-bradykinin or des-Arg9-bradykinin, did not affect osteocalcin and type I collagen formation in unstimulated or 1,25(OH)2-vitamin D3-stimulated osteoblasts. Four non-steroidal antiinflammatory drugs, indomethacin, flurbiprofen, naproxen and meclofenamic acid, inhibited basal, IL-1 beta- and TNF-alpha-stimulated PGE2 formation in the MG-63 cells without affecting IL-1 beta- or TNF-alpha-induced inhibition of osteocalcin and type I collagen formation. In isolated, non-transformed, human osteoblast-like cells, IL-1 beta and TNF-alpha stimulated PGE2 formation and concomitantly inhibited 1,25(OH)2-vitamin D3-stimulated osteocalcin biosynthesis, without affecting type I collagen formation. In these cells, indomethacin and flurbiprofen abolished the effects of IL-1 beta and TNF-alpha on prostaglandin formation without affecting the inhibitory effects of the cytokines on osteocalcin biosynthesis. These data show that IL-1 and TNF inhibit osteocalcin and type I collagen formation in osteoblasts independently of prostaglandin biosynthesis and that non-steroidal antiinflammatory drugs do not affect the effects of IL-1 and TNF on bone matrix biosynthesis.  相似文献   

15.
16.
Adhesion of Langerhans cells (LC) to keratinocytes is mediated by E-cadherin. IL-1, TNF-alpha, and LPS mobilize LC from epidermis and presumably attenuate LC-keratinocyte adhesion. To determine whether these mediators modulated LC E-cadherin-dependent adhesion directly, we characterized their effects on LC-like dendritic cells expanded from murine fetal skin (FSDDC). FSDDC were propagated from day 16 C57BL/6 fetal skin and isolated as aggregates (FSDDC-A) in which homophilic adhesion was mediated by E-cadherin. IL-1, TNF-alpha, and LPS induced dissociation of FSDDC-A that began within 4 to 8 h and was complete within 20 h. Anti-IL-1RI mAb inhibited disaggregation caused by IL-1alpha and IL-1beta, but not that induced by TNF-alpha or LPS. Anti-TNF-alpha mAb inhibited the effect of TNF-alpha and LPS, but not that caused by IL-1alpha or IL-1beta. Flow cytometry of FSDDC-A revealed that IL-1, TNF-alpha, and LPS induced increased expression of MHC class II, CD40, and CD86 and decreased E-cadherin expression that was temporally related to dissociation of aggregates. IL-1 and TNF-alpha caused a rapid reduction in FSDDC E-cadherin mRNA levels that preceded the decrease in E-cadherin surface expression. These results demonstrate that cytokines that induce LC emigration in vivo act directly on LC-like cells in vitro, reduce E-cadherin mRNA levels, down-regulate E-cadherin surface expression, and induce a loss of E-cadherin-mediated adhesion.  相似文献   

17.
The effect of interleukin-8 (IL)-8 on human B cell growth, as determined by thymidine uptake and viable cell numbers was studied. IL-8 inhibited IL-4-induced growth of B cells costimulated with anti-mu antibodies (Ab) or Staphylococcus aureus Cowan strain I (SAC) in a dose-dependent fashion. In contrast, IL-8 did not inhibit IL-2-induced growth of B cells. The IL-8-mediated inhibition was specific, since it was blocked by anti-IL-8 mAb but not by control IgG1. Moreover, anti-tumor necrosis factor-alpha (anti-TNF-alpha) Ab blocked IL-8-mediated inhibition. On the other hand, TNF-alpha, but not other cytokines including IL-1 beta, IL-3, IL-5, IL-6, interferon-alpha (IFN-alpha) or IFN-gamma, inhibited IL-4-mediated growth, and inhibition by TNF-alpha was blocked by anti-TNF-alpha Ab but not by control IgG. IL-4 had no effect on TNF-alpha binding by B cells while it decreased TNF-alpha production by B cells. IL-8 had no effect in binding of IL-4, IL-2 or TNF-alpha by B cells, however, it enhanced TNF-alpha production by B cells. These results indicate that IL-8 inhibited IL-4-induced human B cell growth by enhancement of endogenous TNF-alpha production.  相似文献   

18.
Leukocyte accumulation and activation are key events in the pathogenesis of inflammatory lung disease. The ability of human airway smooth muscle cells (HASM) to contribute to the inflammatory process by its ability to produce the chemokines interleukin (IL) 8, monocyte chemotactic protein (MCP-1) and regulated on activation, normal T cell expressed and secreted (RANTES) was investigated. Cultured HASM, when stimulated with the pro-inflammatory cytokines IL-1 alpha (0.01-1 ng/ml) or tumour necrosis factor alpha (TNF-alpha, 0.3-30 ng/ml), synthesize and release substantial amounts of IL-8, as assessed by specific immunoassay, bioasssay (elevation of intracellular free calcium in human neutrophils), and upregulation of mRNA. These stimuli also increased MCP-1 production and mRNA expression, but RANTES mRNA expression was not detected at 24 h. The smooth muscle spasmogen endothelin 1 (1 microM) was unable to stimulate IL-8 or MCP-1 release or mRNA expression. These data indicate that HASM may constitute an important source of leukocyte attractants in the inflamed lung, where the inducing stimuli, IL-1 alpha and TNF-alpha, are also likely to be present.  相似文献   

19.
The production of monocyte chemoattractant protein-1 (MCP-1) and its regulation by TNFalpha, IL-1, and IL-8 were investigated in two rabbit models of arthritis induced by intra-articular injection of lipopolysaccharide (LPS) or monosodium urate (MSU) crystals. We first prepared recombinant rabbit MCP-1 and antibodies and then developed an immunoassay. The immunoassay detected 3 pg/ml rabbit MCP-1 and did not cross-react with other rabbit chemokines such as IL-8 or GRO. MCP-1 was first detected in synovial fluid (SF) at 1 hour, and peaked at 4 or 2 hours after the injection of LPS or MSU crystals, respectively. Immunohistochemically, MCP-1 was detected in synovial lining cells and infiltrating neutrophils. The amounts of MCP-1 detected in SF from neutrophil-depleted rabbits were similar to those in normal rabbits, suggesting that synovial lining cells were the main source of MCP-1 detected in SF. The peak level of MCP-1 in SF after LPS-injection was inhibited by 57% with anti-TNFalpha mAb and by 41% with IL-1 receptor antagonist (IL-1Ra). Coadministration of anti-TNFalpha mAb and IL-1Ra inhibited 90% of MCP-1 production. In contrast, the peak level of MCP-1 in SF after MSU crystal-injection was not affected by any cytokine inhibitor, but was reduced by 52% with coadministration of anti-TNFalpha mAb and IL-1Ra. Anti-IL-8 IgG had no effect on the production of MCP-1 in either model. Thus, the production of MCP-1 in LPS-induced arthritis was mostly regulated by TNFalpha and IL-1, whereas half the extent of MCP-1 production in MSU crystal-induced arthritis was independent of TNFalpha or IL-1. IL-8 does not seem to regulate the production of MCP-1 in SF either directly or indirectly. Finally, administration of neutralizing anti-MCP-1 antibody inhibited LPS- and MSU crystal-induced monocyte infiltration by 58.4% and 44.9%, respectively, suggesting that synovial production of MCP-1 plays an important role in the recruitment of monocytes in these arthritis models.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号