首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrochemical performance of a divided cell with electrogeneration of Ag2+ from Ag+ in 6 M HNO3 anolyte has been studied with 6 M HNO3 or 3 M H2SO4 as the catholyte. This work arose because in mediated electrochemical oxidation (MEO) processes with Ag(II)/Ag(I) redox mediator, HNO3 is generally used as catholyte, which, however, produces NO x gases in the cathode compartment. The performance of the cell with 6 M HNO3 or 3 M H2SO4 as the catholyte has been compared in terms of (i) the acid concentration in the cathode compartment, (ii) the Ag+ to Ag2+ conversion efficiency in the anolyte, (iii) the migration of Ag+ from anolyte to catholyte across the membrane separator, and (iv) the cell voltage. Studies with various concentrations of H2SO4 catholyte have been carried-out, and the cathode surfaces have been analyzed by SEM and EDXA; similarly, the precipitated material collected in the cathode compartment at higher H2SO4 concentrations has been analyzed by XRD to understand the underlying processes. The various beneficial effects in using H2SO4 as catholyte have been presented. A simple cathode surface renewal method relatively free from Ag deposit has been suggested.  相似文献   

2.
《Journal of aerosol science》1999,30(8):1095-1113
A physical box model simulating the aerosol particle evolution along air mass trajectories is developed to provide a tool for interpreting the local observations of stratospheric aerosols (i.e., polar stratospheric clouds). The model calculates the composition and the size distributions of H2SO4/H2O and HNO3/H2SO4/H2O liquid droplets. The parameterization of the physical processes affecting the dynamics of HNO3 and H2SO4 solid hydrates and ice particle size distributions is also included, but not used. This work is restricted to some speculations about the liquid to solid transition, according to existing theories. The evolution of liquid particles is simulated taking into account nucleation, diffusive condensation/evaporation and coagulation. This paper reports the physical and numerical details of the model, which are discussed within the framework of the current understanding of the stratospheric aerosol physics. Performance and limitations of the model are discussed on the basis of the evolution of particle size, and composition along synthetic air mass thermal histories. Size distributions and size-dependent acid weight fractions of the liquid stratospheric aerosols consisting of HNO3/H2SO4/H2O are calculated in the cases of air mass thermal histories with different cooling rates and with rapid temperature fluctuations.  相似文献   

3.
A systematic investigation of the roughening of atomically flat diamond (111) surfaces by immersion in a hot mixture of HNO3/H2SO4 acids was performed using atomic force microscopy. Before the immersion the diamond surfaces were atomically flat, with single bilayer steps and terraces; surface roughness increased after the immersion in the hot acid mixture. This result suggests that surface oxidation by the hot acid mixture etches the surface causing surface roughening.  相似文献   

4.
Changes in the topography of a diamond (111) surface with atomically flat and wide terraces, caused by immersion in HNO3/H2SO4 and H2SO4/H2O2 solutions were investigated by atomic force microscopy. We observed surface roughening from the HNO3/H2SO4 treatment, and flattening of the HNO3/H2SO4 treated surface from the H2SO4/H2O2 treatment. This suggests that the H2SO4/H2O2 treatment is an effective wet-process for preparing atomically flat oxidized diamond (111) surfaces.  相似文献   

5.
The reduction of lean NOx using ethanol in simulated diesel engine exhaust was carried out over Ag/Al2O3 catalysts in the presence of H2O and SO2. The Ag/Al2O3 catalysts are highly active for the reduction of lean NOx by ethanol but the reaction is accompanied by side reactions to form CH3CHO, CO along with small amounts of hydrocarbons (C3H6, C2H4, C2H2 and CH4) and nitrogen compounds such as NH3 and N2O. The presence of H2O enhances the NOx reduction while SO2 suppresses the reduction. The presence of SO2 along with H2O suppresses the formation of acetaldehyde and NH3. By infrared spectroscopy, it was revealed that the reactivity of NCO species formed in the course of the reaction was greatly enhanced in the presence of H2O. The NCO species readily reacts with NO in the presence of O2 and H2O at room temperature, being converted to N2 and CO2 (CO). Addition of SO2 suppresses the formation of NCO species and lowers the reactivity of the NCO species. However, the reduction of NOx is still kept at high conversion levels in the presence of H2O and SO2 over the present catalysts. About 80% of NOx in the simulated diesel engine exhaust was removed at 743 K. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
《分离科学与技术》2012,47(13):2085-2089
The absorption of NO in aqueous solutions of KMnO4 and H2SO4 was carried out in a stirred tank reactor under atmosphere pressure. The results indicated that the absorption process was under a fast pseudo-m th reaction regime. The reaction between NO and aqueous solutions of KMnO4/H2SO4 was found to be first-order with respect both to NO and to KMnO4. The addition of H2SO4 to KMnO4 solutions increased the absorption rate of NO and increasing reaction temperature was also favorable to the absorption of NO.  相似文献   

7.
《分离科学与技术》2012,47(10):2283-2298
Abstract

The preferred approach to removing Al from Hanford tank sludges, based on aqueous alkaline leaching, often does not achieve complete success. Previous laboratory investigations on the treatment of Hanford tank sludge simulant samples indicate that an acidic scrub can enhance the dissolution of Al from various sludge matrices. If acidic leaching was deployed to enhance removal of tank waste residues, the resulting acidic Al(NO3)3 leachate solution could contain measurable amounts of solubilized transuranic elements and so would demand treatment prior to disposal. In this study, a liquid‐liquid extraction system for the decontamination of the HNO3/Al(NO3)3 aqueous leachate by contact with 60% v/v tributyl phosphate (TBP)/n‐dodecane organic solution has been examined. The partitioning of U and Eu between the TBP phase and solutions of varying [HNO3] and [Al(NO3)3] containing small amounts of Cr or ascorbic acid have been investigated.. The results indicate that >99% of both species could be removed from the aqueous phase using such a process.  相似文献   

8.
A carbon coated Li3V2(PO4)3 cathode material for lithium ion batteries was synthesized by a sol-gel method using V2O5, H2O2, NH4H2PO4, LiOH and citric acid as starting materials, and its physicochemical properties were investigated using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) spectroscopy, scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDAX), transmission electron microscope (TEM), and electrochemical methods. The sample prepared displays a monoclinic structure with a space group of P21/n, and its surface is covered with a rough and porous carbon layer. In the voltage range of 3.0-4.3 V, the Li3V2(PO4)3 electrode displays a large reversible capacity, good rate capability and excellent cyclic stability at both 25 and 55 °C. The largest reversible capacity of 130 mAh g−1 was obtained at 0.1C and 55 °C, nearly equivalent to the reversible cycling of two lithium ions per Li3V2(PO4)3 formula unit (133 mAh g−1). It was found that the increase in total carbon content can improve the discharge performance of the Li3V2(PO4)3 electrode. In the voltage range of 3.0-4.8 V, the extraction and reinsertion of the third lithium ion in the carbon coated Li3V2(PO4)3 host are almost reversible, exhibiting a reversible capacity of 177 mAh g−1 and good cyclic performance. The reasons for the excellent electrochemical performance of the carbon coated Li3V2(PO4)3 cathode material were also discussed.  相似文献   

9.
Tanning of hides and skins to convert them into leather can have a considerable environmental impact. Wastewatertreatment technology can successfully purify leather wastewater. The first part of this research investigated the influence of Al2(SO4)3 concentration on the velocity of tannery wastewater settling. The wastewater sample was taken from two of the most polluted wastewater flows after liming and after chrome tanning. These wastewater flows were mixed together in a ratio of 1:1. The second part was carried out with the samples of wastewater mixed together with different concentrations of A12(SO4)3. The behaviour of settling was investigated after an addition of different concentrations of anionic polyelectrolytes in these samples. The pH, suspended solids mass, volume of sediment, γ(Na2S), γ(Cr2O3), chemical oxygen demand, along with turbidity in the supernatant were determined in the obtained sludge. The results demonstrate the influence of A12(SO4)3 and anionic polyelectrolyte concentrations on the parameters studied and the improvement of environmental properties.  相似文献   

10.
《应用陶瓷进展》2013,112(8):455-459
Abstract

Tb3+ doped Y2O2SO4 (Y2O2SO4:Tb3+) microflakes were prepared by a combination method of electrospinning and calcination. The two-dimensional microflakes had smooth surface and high radial/axial ratio. Crystal structures of the Y2O2SO4:Tb3+ microflakes resulted in layer by layer growth in axial direction. A possible formation mechanism was proposed on the basis of experimental results, which indicated that poly(vinyl pyrrolidone) played the role of the nanostructure directing template and revealed the growth priority in radial direction. The microflakes showed a favourable fluorescent property symbolised by the characteristic green emission (541 nm) resulting from the 5D47F5 transition of Tb3+ ions under 229 nm ultraviolet excitation. The maximum intensity of Tb3+ emission of the Y2O2SO4:Tb3+ microflakes was 2·3 times stronger than that of the Y2O2SO4:Tb3+ bulk powders with the same doping concentration.  相似文献   

11.
The solubility, density, and refractive index data for 1,2-propanediol + Cs2SO4 + H2O, ethylene glycol + Cs2SO4 + H2O, and glycerin + Cs2SO4 + H2O ternary systems were determined at 15°C, 25°C, and 35°C. In all cases, the solubility of Cs2SO4 in aqueous solutions decreased significantly due to the presence of the polyhydric alcohol. The experimental density, refractive index, and solubility data of saturated solutions for these systems were correlated using polynomial equations. Furthermore, the refractive index and density of unsaturated ternary solutions were also determined and correlated with salt concentrations and proportions of polyhydric alcohol in these systems.  相似文献   

12.
Abstract

Small‐angle neutron scattering (SANS) data for the tri‐n‐butylphosphate (TBP)–n‐octane, HNO3–Th(NO3)4 solvent extraction system, obtained under a variety of experimental conditions, have been interpreted using two different models. The particle growth model led to unrealistic results. The Baxter model for hard‐spheres with surface adhesion, on the other hand, was more successful. According to this model, the increase in scattering intensity in the low Q range observed when increasing amounts of Th(NO3)4 are extracted into the organic phase, has been interpreted as arising from interactions between small reverse micelles containing three TBP molecules. Upon extraction of Th(NO3)4, the micelles interact through attractive forces between their polar cores with a potential energy of up to about 2 kBT. The intermicellar attraction, under suitable conditions, leads to third phase formation. Upon phase splitting, most of the solutes of the original organic phase separate in a continuous phase containing interspersed layers of n‐octane.  相似文献   

13.
A solid solution of spinel (2/3)Li(Li1/3Ti5/3)O4–(1/3)Li(Ni1/2Ti3/2)O4 was prepared, and its structural/electrochemical properties were compared with Li(Li1/3Ti5/3)O4 to identify the effect of doping to the structural invariance of Li(Li1/3Ti5/3)O4. The solid solution retained the zero strain characteristic of Li(Li1/3Ti5/3)O4 during discharge/charge with an excellent cycle stability, while the rate capability was notably improved. However, a reversible broadening of the XRD peak was observed at the end of discharge, indicating some structural changes. XANES measurements showed that the oxidation state of Ti was +4 and that of Ni was +2 in the solid solution.  相似文献   

14.
Vanadium supported on unsulfated and sulfated Ti-pillared clays are developed for the selective catalytic reduction (SCR) of nitrogen oxide (NO) by ammonia. The unsulfated Ti-pillared clays (TiM-PILC) were prepared by hydrolysis of titanium methoxide (Ti(OCH3)4) with HCl. The same procedure was employed using H2SO4 in order to obtain the sulfated Ti-pillared clays (STiM-PILC). All the pillared materials were characterized before and after vanadium addition by chemical analysis, XRD, N2-physisorption, TGA, NH3-TPD, H2-TPR and UV–vis. It was found that the sulfation or the addition of a low amount of vanadium into the TiM-PILC reduces the surface area but improves the acidity of the material. The addition of vanadium to the STiM-PILC decreases the surface area, the number of acid sites and the stability of the sulfate species but enhances the redox properties of the material. The STiM-PILC and the V-TiM-PILC exhibit higher NO removal activity at high temperature than the TiM-PILC. The presence of both sulfate and a low amount of vanadium (2 wt.%) in the TiM-PILC leads to an excellent active and selective catalyst for SCR-NO with NH3.  相似文献   

15.
Absorption of SO2 and SO3 in the solutions of waste ferrous sulfate (so-called ‘green salt’) and in the spent acid after TiO2 hydrolysis, at H2SO4 concentrations ranging from 0–5 to 15 g/m3 (STP), was studied. The rate of SO3 absorption has been found to rise linearly with increasing SO3 concentration in the gas and to be independent on H2SO4 concentration in solution. The SO2 absorption also rises linearly with increasing SO2 content in the gas, but diminishes as H2SO4 concentration increases—an upper limit of 100 g H2SO4/kg H2O is indicated. The initial concentration of the solution must not be higher than 40 g H2SO4/kg H2O.  相似文献   

16.
Interaction of SOx (x?=?2,3) molecules on active sites of dianiline (as a model for polyaniline, denoted here as 2PANI) was studied using density functional theory at the BLYP-D/6-31+G(d) level of theory. Natural population analysis was used to find out the charge distribution as well as the net transferred charge of SOx upon adsorption on 2PANI and the result has been compared with Mulliken charge analysis to evaluate the sensing ability of 2PANI. The computed density of states point to the remarkable orbital hybridization between SOx and 2PANI during the adsorption process. As a consequence, the results of UV–VIS confirm the sensing ability of 2PANI toward SO2 and SO3. Based on our results, it can be found that at proper configuration the SO2 and SO3 molecules can be adsorbed on 2PANI with adsorption energies (Eads) of ?18.2 and ?62.9?kJ/mol (BSSE), respectively.  相似文献   

17.
UV/H2O2氧化联合Ca(OH)2吸收同时脱硫脱硝   总被引:1,自引:0,他引:1       下载免费PDF全文
刘杨先  张军  王助良 《化工学报》2012,63(10):3277-3283
在小型紫外光-鼓泡床反应器中,对UV/H2O2氧化联合Ca(OH)2吸收同时脱除燃煤烟气中NO与SO2的主要影响因素[H2O2浓度、紫外光辐射强度、Ca(OH)2浓度、NO浓度、溶液温度、烟气流量以及SO2浓度]进行了考察。采用烟气分析仪和离子色谱仪分别对尾气中的NO2和液相阴离子作了检测分析。结果显示:在本文所有实验条件下,SO2均能实现完全脱除。随着H2O2浓度、紫外光辐射强度和Ca(OH)2浓度的增加,NO的脱除效率均呈现先大幅度增加后轻微变化的趋势。NO脱除效率随烟气流量和NO浓度的增加均有大幅度下降。随着溶液温度和SO2浓度的增加,NO脱除效率仅有微小的下降。离子色谱分析表明,反应产物主要是SO42-和NO3-,同时有少量的NO2-产生。尾气中未能检测到有害气体NO2。  相似文献   

18.
Silica nanoparticles/ammonium thiocyanate (nano SiO2/NH4SCN) and H3PO4 embedded on nano silica (H3PO4@nano SiO2) in the presence of NH4SCN were found to be effective systems for the thiocyanation of some arylamines and indoles to afford their corresponding thiocyanated adducts at 70°C under solvent-free conditions. The recovery and reusability of nano SiO2 as a prompting system have been investigated. A simple procedure for the synthesis of H3PO4@nano SiO2 has also been represented. In addition, a plausible mechanism of thiocyanation has also been suggested.  相似文献   

19.
Co-doped Li3V2−xCox(PO4)3/C (x = 0.00, 0.03, 0.05, 0.10, 0.13 or 0.15) compounds were prepared via a solid-state reaction. The Rietveld refinement results indicated that single-phase Li3V2−xCox(PO4)3/C (0 ≤ x ≤ 0.15) with a monoclinic structure was obtained. The X-ray photoelectron spectroscopy (XPS) analysis revealed that the cobalt is present in the +2 oxidation state in Li3V2−xCox(PO4)3. XPS studies also revealed that V4+ and V3+ ions were present in the Co2+-doped system. The initial specific capacity decreased as the Co-doping content increased, increasing monotonically with Co content for x > 0.10. Differential capacity curves of Li3V2−xCox(PO4)3/C compounds showed that the voltage peaks associated with the extraction of three Li+ ions shifted to higher voltages with an increase in Co content, and when the Co2+-doping content reached 0.15, the peak positions returned to those of the unsubstituted Li3V2(PO4)3 phase. For the Li3V1.85Co0.15(PO4)3/C compound, the initial capacity was 163.3 mAh/g (109.4% of the initial capacity of the undoped Li3V2(PO4)3) and 73.4% capacity retention was observed after 50 cycles at a 0.1 C charge/discharge rate. The doping of Co2+into V sites should be favorable for the structural stability of Li3V2−xCox(PO4)3/C compounds and so moderate the volume changes (expansion/contraction) seen during the reversible Li+ extraction/insertion, thus resulting in the improvement of cell cycling ability.  相似文献   

20.
Electrochemical and thermal properties of Co3(PO4)2- and AlPO4-coated LiNi0.8Co0.2O2 cathode materials were compared. AlPO4-coated LiNi0.8Co0.2O2 cathodes exhibited an original specific capacity of 170.8 mAh g−1 and had a capacity retention (89.1% of its initial capacity) between 4.35 and 3.0 V after 60 cycles at 150 mA g−1. Co3(PO4)2-coated LiNi0.8Co0.2O2 cathodes exhibited an original specific capacity of 177.6 mAh g−1 and excellent capacity retention (91.8% of its initial capacity), which was attributed to a lithium-reactive Co3(PO4)2 coating. The Co3(PO4)2 coating material could react with LiOH and Li2CO3 impurities during annealing to form an olivine LixCoPO4 phase on the bulk surface, which minimized any side reactions with electrolytes and the dissolution of Ni4+ ions compared to the AlPO4-coated cathode. Differential scanning calorimetry results showed Co3(PO4)2-coated LiNi0.8Co0.2O2 cathode material had a much improved onset temperature of the oxygen evolution of about 218 °C, and a much lower amount of exothermic-heat release compared to the AlPO4-coated sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号