首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lead-free Aurivillius phase BaBi2Nb2O9 powders were prepared by solid-state reaction. Ferroelectric measurements on BaBi2Nb2O9 (BBNO) ceramics at room temperature provided supporting evidence for the existence of polar nanoregions (PNRs) and their reversible response to an external electric field, indicating relaxor behavior. The photocatalytic degradation of Rhodamine B reached 12% after 3 hours irradiation of BBNO powders under simulated solar light. Silver (Ag) nanoparticles were photochemically deposited onto the surface of the BBNO powders and found to act as electron traps, facilitating the separation of photoexcited charge carriers; thus, the photocatalytic performance was significantly improved. The present study is the first examination of the photochemical reactivity of a relaxor ferroelectric within the Aurivillius family with PNRs.  相似文献   

2.
Aurivillius phase Ca2Bi4Ti5O18 powders with micrometer size were produced by solid-state reaction. X-ray diffraction revealed that the powders had polar orthorhombic structure with space group of B2cb. Ca2Bi4Ti5O18 ceramic exhibited frequency independent dielectric anomaly at 774°C. The piezoelectric coefficient d33 value of poled Ca2Bi4Ti5O18 pellets was 0.7 ± 0.2 pC/N. Both frequency independent dielectric anomaly and detectable d33 value clearly indicated that Ca2Bi4Ti5O18 is a ferroelectric material with Curie point of 774 ℃. UV–vis absorption spectra revealed that Ca2Bi4Ti5O18 had a direct band gap of 3.2 eV. Photocatalytic activity of the Ca2Bi4Ti5O18 powders was examined by degradation of rhodamine B (RhB) under simulated solar light. 16% of RhB solution was degraded by Ca2Bi4Ti5O18 powders after 4 hours UV-vis irradiation. With Ag nanoparticles deposited on the Ca2Bi4Ti5O18 powders surface, 50% of RhB was degraded under the same irradiation condition. The fitted degradation rate constant of Ag decorated Ca2Bi4Ti5O18 was 4 times higher than that of bare Ca2Bi4Ti5O18. This work suggested that the Aurivillius ferroelectric Ca2Bi4Ti5O18 is a promising candidate for photocatalytic applications.  相似文献   

3.
In the present era of advanced technology, the surge for suitable multifunctional materials capable of operating above 300 °C has increased for the utilization of high-temperature piezoelectric devices. For this purpose, a pseudo-tetragonal phased CaBi4Ti3.98 (Nb0.5Fe0.5)0.02O15:xwt%MnO2 (CBTNF:xMn), with x = 0–0.20, ceramic system has been engineered for the investigation of structural, ferroelectric, dielectric and high-temperature-dependent piezoelectric properties. XRD analysis confirms that low-content Mn-ion insertion at the lattice sites of CBTNF does not distort the pseudo-tetragonal phase lattice of CBTNF:xMn ceramics, but enhances the functional behavior of the ceramic system, specifically at x = 0.15 wt%Mn. Compared to pure CBT and CBTNF ceramics, CBTNF:0.15Mn has demonstrated a highly dense relative density (~96%), a saturated polarization (PS) of 15.89 µC/cm2, a storage energy density (WST) of ~1.82 J/cm3, an energy-conversion efficiency (ƞ) of ~51% and an upgraded piezoelectric behavior (d33) of 27.1 pC/N at room temperature. Sharp temperature-dependent dielectric constant (εr) peaks display the solid ferroelectric behavior of the CBTNF:0.15Mn sample with a Curie temperature (TC) of 766 °C. The thermally stable piezoelectric performance of the CBTNF:0.15Mn ceramic was observed at 600 °C, with just a 0.8% d33 loss (25 pC/N). The achieved results signify that multi-valence Mn ions have effectively intercalated at the lattice sites of the pseudo-tetragonal phased CBTNF counterpart and enhanced the multifunctional properties of the ceramic system, proving it to be a durable contender for utilization in energy-storage applications and stable high-temperature piezoelectric applications.  相似文献   

4.
Single-phase Aurivillius Bi5Ti3Fe0.5Ni0.5O15 (BTFN) ceramics were synthesized by the solid-state reaction method. The substitution of Ni for half Fe ions does not introduce magnetic impurity phase but increases magnetic moment more than two orders. The ferroelectric and magnetic Curie temperatures are determined to be 1100 K and 726 K. The room-temperature multiferroic behavior of the BTFN ceramics were demonstrated by the ferroelectric (2Pr=8.5 μC/cm2, 2Ec=74 kV/cm) and ferromagnetic (2Mr=27.86 m emu/g, 2Hc=553 Oe) measurements. The ferromagnetism can be ascribed to the aggregation of magnetic ions at the inner octahedra by Ni doping and the spin canting of magnetic-ion-based sublattices via the Dzyaloshinskii-Moriya interaction. The present work suggests the possibility of doped Bi5Ti3FeO15 as a potential room-temperature multiferroic.  相似文献   

5.
H2La2Ti3O10/ TiO2 intercalated nanomaterial was fabricated by successive intercalation reactions of H2La2Ti3O10 with n-C6H13NH2/C2H5OH mixed solution and acid TiO2 sol, followed by irradiating with a high-pressure mercury lamp. The intercalated materials possess a gallery height of 0.46 nm and a specific surface area of 31.58 m2·g−1, which indicate the formation of a porous material. H2La2Ti3O10/TiO2 shows photocatalytic activity for the decomposition of organic dye under irradiation with visible light and the activity of TiO2 intercalated material was superior to the unsupported one.  相似文献   

6.
A new compound of barium bismuth neodymium titanate BaBi3.5Nd0.5Ti4O15 was synthesized using the traditional solid-state reaction method. X-ray diffraction analysis confirmed the compound to be a layered tetragonal structure and Raman spectrum indicated that Nd ions occupy the A site. The plate-like morphology with average grain size about 2–4 μm was observed by a scanning electron microscope (SEM). A precision impedance analyzer was used to measure the dielectric properties and impedance spectroscopy of the ceramics. The results show that the temperature of dielectric constant maximum (Tm), the room temperature dielectric constant (εr) and loss (tan δ) at 100 kHz are 287° C, 326 and 0.017, respectively. The modified Curie–Weiss law was used to describe the relaxor behavior of the ceramics which was attributed to the A site cationic disorder. The remnant polarization (2Pr) of the sample was observed to be 1.27 μC/cm2 at room temperature.  相似文献   

7.
Single-phase Bi4NdTi3Fe0.7Ni0.3O15 polycrystalline samples were synthesized following a multicalcination procedure. The sample exhibited multiferroic property at room temperature, which was demonstrated by the ferroelectric (2Pr=8.52 μC/cm2, 2Ec=89 kV/cm at applied electric field 110 kV/cm) and magnetic (2Mr=388 m emu/g, 2Hc=689 Oe at applied magnetic field 1.04 T) hysteresis loops. More importantly, magnetoelectric coupling effect is observed from measurements of electrical properties not only under small but also under large electric signal when an external magnetic field is applied. The present results suggest a new candidate for a room temperature multiferroic material with magnetoelectric coupling effect.  相似文献   

8.
ABSTRACT

Ti3AlC2/Al2O3 composite materials were successfully fabricated from TiO2/TiC/Ti/Al powders by the in situ reactive hot pressed technique. The microstructure, mechanical and oxidation properties of the composites were investigated in the paper. Vickers hardness increased with the Al2O3 content. The relative density of Ti3AlC2/Al2O3 composites exhibits a declining tendency with Al2O3 content especially exceeds 10 vol.?%. The Ti3AlC2/Al2O3 composites show excellent electrical conductivity. The flexural strength and fracture toughness of Ti3AlC2/10 vol. % Al2O3 are 461 ± 20?MPa and 6.2?±?0.2?MPa m1/2, respectively. The cyclic oxidation behaviour of resistance of Ti3AlC2/10 vol. % Al2O3 composites at 800–1000°C generally obeys a parabolic law. The oxide scale of sample consists of a mass of α-Al2O3 and TiO2, forming a dense and adhesive protect layer. The result indicates that the Al2O3 can greatly improve the oxidation resistance of Ti3AlC2.  相似文献   

9.
Flaky monoclinic La2Ti2O7 was prepared via a hydrothermal method based on the reaction of Ti(SO4)2 and La(NO3)3. Relative to the solid-state reaction sample, the flaky La2Ti2O7 showed higher surface areas, much smaller crystal size and more efficient light absorption. All these factors led to the higher photoactivity to produce H2 from water splitting under UV irradiation.  相似文献   

10.
A [110] layered perovskite, La2Ti2O7, was a good photocatalyst under ultraviolet light in water splitting reaction. The material was synthesized with La2O3 and TiO2 as precursors by solid-state transformation. The morphology and photocatalytic activity of La2Ti2O7 depended on the preparation methods, as well as purity and morphology of the precursors. Wet-grinding of precursors in ethanol gave a product with higher crystallinity and phase purity, and thus higher photocatalytic activity, than dry-grinding without solvent. It was important to reduce the particle size of La2O3, as it usually had larger initial particle sizes than TiO2. Thus, the particle size of La2O3 had a strong effect on the crystallinity and surface area of the product La2Ti2O7. On the other hand, a severe chemical purity control was required for TiO2, while the effect of morphology was relatively small. In all cases, a high degree of crystallinity and purity of the prepared La2Ti2O7 was critical to show a high photocatalytic water-splitting activity.  相似文献   

11.
Nickel and magnesium ferrite magnetic nanoparticles were fabricated and applied as efficient and reusable catalysts in the solvent-free conversion of various epoxides to the corresponding thiiranes with ammonium thiocyanate under oil bath (60°C) conditions. NiFe2O4 and MgFe2O4 nanoparticles can catalyze the reactions at short times in high to excellent yields. The catalysts can also be recovered easily using an external magnetic field and be reused four times without any significant loss of activity.  相似文献   

12.
CaCu3Ti4O12 nano-sized powders were successfully prepared by sol-gel technique and calcination at 600-900 °C. The thermal decomposition process, phase structures and morphology of synthesized powders were characterized by IR, DSC-TG, XRD, TEM, respectively. It was found that the main weight-loss and decomposition of precursors occurred below 450 °C and the complex perovskite phase appeared when the calcination temperature was higher than 700 °C. Using above synthesized powders as starting materials, CCTO-based ceramics with excellent dielectric properties (?25 = 5.9 × 104, tan δ = 0.06 at 1.0 kHz) were prepared by sintering at 1125 °C. According to the results, a conduction mechanism was proposed to explain the origin of giant dielectric constant in CCTO system.  相似文献   

13.
《应用陶瓷进展》2013,112(4):234-239
Abstract

In the present study, the effect of temperature and oxidising agents such as Fe2O3 and Co3O4 on physical and mechanical properties of glass foam is investigated. The glass foam is made of panel glass from dismantled cathode ray tubes and SiC as a foaming agent. In the process, powdered waste glass (mean particle size below 63 μm) in addition to 4 wt-% SiC powder (mean particle size below 45 μm) are combined with Fe2O3 and Co3O4 (0·4, 0·8 and 1·2 wt-%) have been sintered at 950 and 1050°C. The glass foamed containing 1·2 wt-% Co3O4 has good physical properties, with porosity more than 80% and bending strength more than 1·57±0·12 MPa. However, by adding different amounts of Fe2O3 in comparison with samples without iron oxide, little changes in porosity and strength are obtained.  相似文献   

14.
Na0.5Bi4.5-xCexTi4O15 (x = 0, 0.02, 0.04, 0.06, 0.08, 0.10) lead-free piezoelectric ceramics with high Curie temperatures are fabricated using the conventional solid-phase method. The effects of the Ce content on the phase structures, morphologies, and electrical properties of the Na0.5Bi4.5-xCexTi4O15 ceramics are systematically investigated. The appropriate content of Ce increases b/a and c/a and induces the distortion of the crystal structure. The increased b/a leads to a transverse asymmetry of the Na0.5Bi4.5-xCexTi4O15 ceramics, which facilitates the dipole flipping, thus enhancing the piezoelectric properties (d33 = 20 pC/N). Although the improved c/a increases the degree of tetragonality of the Na0.5Bi4.5-xCexTi4O15 ceramic, which decreases the Curie temperature (TC), the TC values of all samples are higher than 600°C, considerably higher than the practical application temperature. The Ce doping significantly reduces the dielectric loss of the sample and increases its dielectric performance. The improvements in electric properties by the cerium doping can expand its use in high-temperature environments for oilfield logging, aerospace, and military applications.  相似文献   

15.
Sr4Ti3O10, which is known to have a Ruddlesden-Popper phase as a layered perovskite-type oxide, showed activity leading to the decomposition of pure water into H2 and O2 without any co-catalyst, when irradiated with light under 395 nm. When NiO x was loaded onto Sr4Ti3O10 both by the impregnation (I) method and the vapor deposition (VD) method, this photocatalytic activity drastically increased. Nickel acetylacetonate, when used with the VD method, was found to give rise to more efficient photocatalytic activity than that obtained using nickel nitrate with the impregnation method.  相似文献   

16.
We have measured, for the first time, the light-intensity dependence in photocatalytic decomposition of water over K4Nb6O17 In higher light-intensity region, the rate of reaction is proportional to the square root of the light intensity. In lower light-intensity region, on the contrary, the rate is almost linearly proportional to the light intensity. We propose a reaction model whose main path of the reaction loss is the recombination of the charges generated under b and -gap radiation. This model describes the light-intensity dependence of this reaction well.  相似文献   

17.
In this study, Co3O4 nanosheets were synthesized through hydrothermal method using cobalt nitrate hexahydrate. X-ray diffraction, diffuse reflectance spectra, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and field emission scanning electron microscopy were applied to investigate the properties of as-synthesized samples. Ultimately, the electrochemical and photoelectrochemical properties were evaluated by Mott–Schottky analysis and measuring photoconversion efficiency of Co3O4 nanosheets. The results indicated that Co3O4 nanosheets exhibited a maximum efficiency of 0.92% for water electrolysis under simulated 1.5 global sunlight air mass, which further suggests the excellent potential of Co3O4 nanosheets for application in hydrogen generation through photocatalytic water splitting.  相似文献   

18.
Surface-enhanced Raman spectroscopy (SERS) is an ultra-sensitive and rapid technique that is able to significantly enhance the Raman signals of analytes absorbed on functional substrates by orders of magnitude. Recently, semiconductor-based SERS substrates have shown rapid progress due to their great cost-effectiveness, stability and biocompatibility. In this work, three types of faceted Co3O4 microcrystals with dominantly exposed {100} facets, {111} facets and co-exposed {100}-{111} facets (denoted as C-100, C-111 and C-both, respectively) are utilized as SERS substrates to detect the rhodamine 6G (R6G) molecule and nucleic acids (adenine and cytosine). C-100 exhibited the highest SERS sensitivity among these samples, and the lowest detection limits (LODs) to R6G and adenine can reach 10−7 M. First-principles density functional theory (DFT) simulations further unveiled a stronger photoinduced charge transfer (PICT) in C-100 than in C-111. This work provides new insights into the facet-dependent SERS for semiconductor materials.  相似文献   

19.
ABSTRACT

A novel high closed porosity Al2O3-MgAl2O4 refractory aggregate has been successfully fabricated by utilising superplasticity with Al2O3 and MgO as raw materials, SiC as high temperature pore-forming agent. The effects of the addition amounts of MgO and SiC on porosity, sintering behaviours, phase composition, pore size distribution and microstructure of the refractory aggregate have been investigated. The formation mechanism of the closed pore in the refractory aggregate has been discussed. The results showed that the MgO can improve the superplastic deformation ability of Al2O3-based ceramic at high temperature. With the content of MgO and SiC increased, the closed porosity and the pore size increased. The oxidation of SiC improved the sinterability of materials at the initial stage of sintering, and then the released gases due to the further oxidation of SiC promoted the formation of closed pores by motivating the superplastic deformation ability of Al2O3-based materials.  相似文献   

20.
Catalysts based on crystalline nanoparticles of Mn and Co metal oxides supported on mesoporous silica SBA-15 have been developed. These materials were characterized by XRD, BET and transmission electron microscopy (TEM) techniques. SBA-15 mesoporous silica was synthesized by a conventional sol–gel method using a tri-block copolymer as surfactant. Supported Mn3O4 and Co3O4 nanoparticles were obtained after calcination of as-impregnated SBA-15 by a metal salt precursor. The catalytic activity was evaluated in the combustion of methane at low concentration.Co3O4/SBA-15 (7 wt.%) exhibits the highest performance among the different oxides. Furthermore, this novel generation of catalysts appeared as active as conventional LaCoO3 perovskite, usually taken as reference for this reaction. Thanks to its organized meso-structures, SBA-15 material creates peculiar diffusion conditions for reactants and/or products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号