首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
针对非线性跟踪系统中由于弱观测性,大的初始化误差使的系统出现不稳定、跟踪收敛速度慢,鲁棒性能差的问题,本文在内插公式滤波器的基础上提出了基于观测迭代插值滤波器。该算法在插值滤波器基础上,利用观测迭代过程来取代单纯的近似条件估计进行预测,减小观测函数线性化所带来的误差影响具有更精确的状态和协方差估计性能。仿真结果表明该算法在大噪声和大初始化误差条件下拥有比传统算法更高的跟踪精度,和更快的收敛速度。  相似文献   

2.
基于二阶插值滤波的粒子滤波改进算法研究   总被引:2,自引:0,他引:2  
粒子退化等问题严重制约了粒子滤波的工程应用,通过对粒子滤波的分析与总结,提出一种基于二阶插值滤波的粒子滤波改进算法,利用二阶插值滤波器计算出更优的重要性函数,从而有效抑制粒子滤波的退化,降低了计算量,通过对导弹再入时的非线性导航参数估计问题进行实例仿真分析,所得结果验证了该算法的有效性.  相似文献   

3.
借助移动物体轨迹上标定的真实值点的位置信息和方向信息,构造分段三次Hermite插值函数,对标准卡尔曼滤波和标准粒子滤波的状态方程进行修正,得到两种改进滤波模型,解决了标准滤波算法中状态方程不能准确刻画物体实际运动轨迹的问题。在实验分析中对定常速曲线运动物体的位置坐标进行滤波修正,位置坐标的均方误差分析表明,卡尔曼滤波算法和粒子滤波算法的滤波效果均有改善,其中卡尔曼滤波算法在精度上明显提高。此外,真实值点数量的灵敏度分析的结果表明,在目标轨迹上取少量且关键的点作为真实值点即可达到明显的修正效果。  相似文献   

4.
基于粒子滤波的机动目标跟踪算法仿真研究   总被引:4,自引:0,他引:4  
针对非线性多目标模型,应用粒子滤波算法,这种方法不受模型线性和Gauss假设的约束,是一种处理非线性非高斯动态系统状态递推估计的有效算法。在粒子滤波的基础上融合扩展卡尔曼滤波算法和无迹卡尔曼滤波算法。融合后的新算法在计算提议概率密度分布时,粒子的产生充分考虑当前时刻的量测,使得粒子的分布更加接近状态的后验概率分布,再用平滑算法处理滤波的结果。仿真结果表明,算法有较好的跟踪效果。  相似文献   

5.
差分线性化EKF滤波方法研究   总被引:3,自引:1,他引:2  
针对扩展卡尔曼滤波(EKF)框架下非线性模型线性化时雅克比矩阵计算复杂且精度难以保证的情况;提出一种基于差分线性化的EKF算法。该方法用目标位置的量测值和状态一步估值作差分的方法代替雅克比阵的计算。通过蒙特卡洛仿真表明;差分EKF在保证跟踪精度的前提下;大大简化了复杂的求导运算;适合于实际的跟踪系统应用。  相似文献   

6.
单传感器纯方位跟踪问题仍是目前研究的重点和难点,方位角变化率很大时往往使得扩展卡尔曼滤波等矩匹配算法不稳定或发散。重点研究漂移瑞利滤波算法在方位角变化率很大的复杂单传感器纯方位目标跟踪场景下的性能,比较了漂移瑞利滤波,扩展卡尔曼滤波,不敏卡尔曼滤波,粒子滤波等其他非线性跟踪算法的性能,推导并计算了相关问题的Cramer-Rao下界并将其用作比较估值准确性和衡量算法性能的评价指标。仿真结果表明:漂移瑞利滤波算法的性能优于其他矩匹配算法,能达到与粒子滤波大体相同的计算精度,但它的计算速度比粒子滤波算法快几个数量级。  相似文献   

7.
介绍了3种最基本非线性滤波算法--扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)和粒子滤波(PF)算法的理论在机动目标跟踪中的应用.通过仿真试验对三者性能进行了分析比较.  相似文献   

8.
一、引言求解时变系数的微分方程时,如果处理变系数采用的方法不当,会给最终结果带来不利的影响,这里考虑三种经典插值方法: 1.一次分段线性插值:快速,但不光滑 2.二次分段抛物插值:速度较慢,分段光滑,但节点处不光滑上述两种方法在极值(局部)情况下,处理结果不够理想  相似文献   

9.
针对非线性非高斯离散动态系统中的状态估计问题,基于高斯和递推关系,提出一种高斯和状态估计算法GSSRCKF.首先将状态噪声、观测噪声及滤波初值均表示为高斯和的形式,以平方根容积卡尔曼滤波为子滤波器分别估计各高斯子项对应的系统状态;然后结合各子项对应的权值实现全局估计;最后设计高斯子项对应权值的自适应策略,并采用约简控制法降低计算复杂度.仿真结果验证了所提出的算法在滤波稳定性方面的优越性.  相似文献   

10.
基于边缘粒子滤波的目标跟踪算法研究   总被引:1,自引:0,他引:1  
为了提高目标跟踪过程中粒子滤波结果的精度,将边缘粒子滤波算法应用于目标跟踪。首先将目标运动状态向量划分为线性和非线性两个子向量,然后,采用卡尔曼滤波方法处理线性状态子向量,采用粒子滤波方法处理非线性状态子向量。使用边缘粒子滤波算法和标准粒子滤波算法对目标进行跟踪仿真。仿真结果表明:将边缘粒子滤波算法应用在目标跟踪过程中,能够取得更高的跟踪精度;时间复杂度增加仅6%;在粒子数相对较少的条件下,仍能够保持较好的滤波性能。  相似文献   

11.
针对扩展卡尔曼粒子滤波算法中由于粒子退化和贫化而导致的滤波精度降低问题,提出了一种人工鱼群优化的扩展卡尔曼粒子滤波算法.通过人工鱼群优化算法中的觅食和聚群行为,对采样过程进行优化,使得粒子不断地朝高似然域移动来寻找最优位置,从而改善样本分布,加速样本集的收敛,缓解了退化现象;然后对重采样过程进行优化,以提升样本的多样性,从而克服了粒子样本贫化问题.实验结果表明,改进后算法提高了对系统状态的预估精度,更适合在对精度要求高的系统中进行滤波计算.  相似文献   

12.
基于扩展卡尔曼滤波的船舶横向运动扰动估计   总被引:2,自引:0,他引:2  
建立了船舶横向运动状态方程和测量方程,利用扩展卡尔曼滤波方法对海浪扰动下的船舶横向运动的扰动力和力矩作出估计。仿真结果表明,扩展卡尔曼滤波法比有色卡尔曼滤波法估计效果更优。  相似文献   

13.
改进的卡尔曼滤波算法系统参数辨识仿真研究   总被引:1,自引:0,他引:1  
李骞  刘辛 《计算机仿真》2012,29(3):172-175
研究系统参数辨识精度提高问题。辨识是从实验数据中提取有关系统信息的过程,由于存在噪声影响辨识精度,针对传统的卡尔曼滤波算法不能很好地提高跟踪精度且算法复杂的缺陷,为了解决实际系统辨识中参数噪声方差和观测噪声方差未知的等相关问题,提出了一种改进的无味卡尔曼滤波算法系统参数辨识方法,仿真结果表明,算法具有更好的泛化能力,在复杂的系统负载等情况下,也可以对系统的参数精确有效的进行辨识,验证了该算法是一种有效适用的系统参数辨识方法。  相似文献   

14.
基于扩展卡尔曼滤波的潜艇破损进水估计研究   总被引:1,自引:0,他引:1  
研究潜艇水下撞击破损后进水位置和水量优化估计问题,当潜艇因碰撞和触雷等破损进水时,准确的获取潜艇水下破损进水时的进水量和进水位置信息,对潜艇指挥员采取及时有效地抗沉手段具有重要的现实指导意义。由于进水后形成较大的系统干扰,造成信息不稳定。为解决上述问题,提出采用滤波器将潜艇水下破损进水后产生的干扰力和干扰力矩定义为潜艇垂直面运动系统的扩展状态变量,用扩展卡尔曼滤波对潜艇破损后的进水量和进水位置进行状态估计识别。仿真结果表明,改进方法能够较为精确地估计出潜艇水下破损时的进水量和进水位置,对潜艇指挥员在潜艇水下破损情况的指挥决策具有重要的参考价值。  相似文献   

15.
针对卡尔曼滤波在实际应用中遇到的系统通常不是严格线性的问题,改进了在组合导航系统中常用的卡尔曼滤波方法,用扩展卡尔曼滤波对INS和外部测量源的信息进行融合,推导了无人机GPS辅助惯性导航系统的导航方程.通过分析GPS和INS的定位原理,建立了GPS和INS的误差模型.完成了以INS为主导航系统,GPS作为辅助系统的组合导航系统的扩展卡尔曼滤波设计.最后,将线性卡尔曼滤波和扩展卡尔曼滤波的结果进行了仿真对比分析,结果表明:扩展卡尔曼滤波更适合系统为非线性的情况.  相似文献   

16.
A hierarchical extended Kalman filter (EKF) design is proposed to estimate unmeasured state variables and key kinetic parameters in a first principles model of a continuous ethylene–propylene–diene polymer (EPDM) reactor. The estimator design is based on decomposing the dynamic model into two subsystems by exploiting the triangular model structure and the different sampling frequencies of on-line and laboratory measurements directly related to the state variables of each subsystem. The state variables of the first subsystem are reactant concentrations and zeroth-order moments of the molecular weight distribution (MWD). Unmeasured state variables and four kinetic parameters systematically chosen to reduce bias are estimated from frequent and undelayed on-line measurements of the ethylene, propylene, diene and total polymer concentrations. The state variables of the second subsystem are first-order moments of the MWD. Given state and parameters estimates from the first subsystem EKF, the first-order moments and three non-stationary parameters added to the model for bias reduction are estimated from infrequent and delayed laboratory measurements of the ethylene and diene contents and number average molecular weight of the polymer. Simulation tests show that the hierarchical EKF generates satisfactory estimates even in the presence of measurement noise and plant/model mismatch.  相似文献   

17.
论文对近似二阶EKF(ASEKF)进行了理论分析,了解其滤波原理和特点,并以空中抛射物为滤波仿真研究对象,建立抛射物的运动跟踪系统的离散化状态方程,利用ASEKF估计系统状态量,再由状态量计算系统输出量.仿真结果表明,ASEKF滤波法具有较高的估计精度和收敛性,而且效率较高,抛射物的运动跟踪误差基本在2%以内,远小于构...  相似文献   

18.
在认知雷达目标跟踪过程中,由于存在初始跟踪误差及系统量测方程的非线性等原因,导致卡尔曼滤波算法性能较差.为解决上述问题,将Gauss-Newton迭代方法与容积卡尔曼滤波算法相结合,建立迭代容积卡尔曼滤波算法.算法在迭代过程中利用最新的量测信息并更新迭代过程中产生的新息方差,降低了目标初始状态的估计误差,并且减小了线性化量测方程引入的传递误差.仿真结果表明,迭代容积卡尔曼滤波算法与传统的扩展卡尔曼滤波算法、无迹卡尔曼滤波算法、容积卡尔曼滤波算法相比,在认知雷达中的跟踪精度更高,稳定性更好,对初始误差的容错性更强.结果可为雷达目标跟踪优化提供科学依据.  相似文献   

19.
李杨  胡柏青 《计算机仿真》2012,29(3):117-119,157
关于优化组合导航系统定位精度问题,由于惯导系统为非线性系统,存在滞后和噪声特性,影响系统定位精度,传统卡尔曼滤波器滤波一段时间后,系统预测误差方差阵逐渐趋于零,状态估计过分依赖旧量测值,从而导致滤波发散,系统定位精度差。目前采用在预测误差方差阵中引入标量衰减因子来抑制发散,但该标量因子是不变量,难以修正所有状态估计异常的情况。为有效提高新量测值对预测值的修正作用,研究了一种改进的衰减记忆滤波算法,通过引入可变加权系数来抑制发散。经数值仿真结果表明,新算法的滤波效果相比卡尔曼滤波和带标量因子的衰减记忆滤波有较明显的改善,提高了系统的定位精度,对工程应用有一定参考价值。  相似文献   

20.
为了研究运动声阵列对二维目标在复杂环境中的实时跟踪性问题,根据运动声阵列及二维目标的运动特点建立了状态方程与测量方程,并将其描述为块的形式.根据不同的状态块,利用小波变换把状态块分解到不同尺度上,分别在时域和频域上建立相应尺度上的状态与观测信息之间的关系;采取卡尔曼滤波器递推思想来实现运动声阵列的多尺度贯序式卡尔曼滤波算法,根据最小二乘误差估计理论推导了运动声阵列跟踪系统在球坐标系和直角坐标系下的误差,为提高系统跟踪精度奠定了理论基础,并为工程应用提供了实际方法.与传统的卡尔曼滤波算法相比,Matlab仿真结果表明了本文算法的有效性和优越性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号