首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
超高速时电主轴轴承的动态支承刚度分析   总被引:13,自引:1,他引:12  
基于滚动轴承受力分析的拟静力学和拟动力学模型,利用数值计算方法对超高速时电主轴轴承的内部动力学状态进行计算机模拟仿真,在求解每一个球滚动体动力学基本参量的基础上,计算电主轴轴承对转子支承的动态刚度,并结合具体算例,分析转速、轴承预载荷、径向外载荷等工况条件,以及套圈滚道曲率半径、球滚动体的直径和数量等轴承的内部结构尺寸、球材料的物理性能等方面的因素对轴承动态支承刚度的影响。分析结果表明,外部工况条件以及轴承内部的结构尺寸、球材料的物理性能等方面的因素对超高速时电主轴轴承的动态支承刚度影响较大,超高速时电主轴轴承的动刚度较静态和低速情况有着显著的变化。  相似文献   

2.
This paper presents the effects of bearing preload mechanisms on the dynamic performance of high speed spindles. The comparisons of two main types of bearing preload????constant?? and ??rigid????mechanisms are provided using a mathematical model as well as experiments. Based on the Timoshenko beam element theory coupled with a nonlinear model of angular contact ball bearings, the dynamics of the spindle shaft, housing, and bearings system is modeled as a nonlinear function of preload mechanism and amplitude, spindle speed, and external cutting loads. The mathematical model of the spindle is experimentally validated by comparing the predicted and measured static displacements, mode shapes, frequency response functions, and natural frequencies under different conditions. The performance of spindles under rigid and constant force preload is investigated systematically using a mathematical model under various conditions. It is shown, among other things, that at high speeds and under cutting loads the rigid preload mechanism is more efficient in maintaining the dynamic stiffness of spindles than constant preload.  相似文献   

3.
高速电主轴轴承油气润滑系统的研究   总被引:5,自引:0,他引:5  
高速电主轴轴承高速旋转时,轴承内部将产生大量摩擦热,从而影响轴承刚度性能及高速性能,轴承润滑可以减少热量的产生,降低温升。油气润滑系统相对于其它润滑系统更适应于高速主轴轴承的润滑要求。对油气润滑的工作原理及其优越性等方面进行了分析。  相似文献   

4.
介绍了紧凑型高速电主轴的结构设计,建立了主轴-拉刀机构双转子系统模型,研究了电主轴拉刀机构的静动态特性,得到了工作状态下电主轴的静态位移、振型、固有频率以及关键点的响应位移。对主轴-拉刀材料、轴承预紧力、轴承组跨距、主轴-拉刀接触刚度以及主轴-刀柄接触刚度等参数进行优化设计。结果表明优化后电主轴的静动刚度均满足要求、固有频率提高、电主轴安全工作频率区间增大。电主轴模态测试结果证明了以上结果的可靠性。该研究为紧凑型高速电主轴的设计提供了理论基础。  相似文献   

5.
Abstract

The hard disk drive spindle is one of the critical mechanical components in hard disk drives (HDDs). It has great influence on overall performance, including track density, data-transfer rate, energy consumption, noise, and so forth. Nowadays, HDDs with higher density and speed, larger capacity, and smaller size are under active development. This requires that HDD spindles have fast rotating speed, excellent accuracy, and small size. However, ball-bearing spindles, which are widely used in current HDDs, cannot meet these requirements. HDD spindles supported by oil-lubricated spiral-groove bearings are considered to be a candidate to replace ball-bearing spindles. There is no oil-supply device in the bearing, and the flow characteristics of the lubricant in the bearing have a great effect on the performance of the spindle.

In this article, the fluorescent method is used to study the flow characteristics of the lubricant in a spiral-groove bearing. The establishment and recovery of the lubricant film during start/stop of the spindle are observed. The effects of working conditions on the thickness and distribution of the lubricant film are investigated. The influence of oil supply on the performance of the bearing is also studied.  相似文献   

6.
For ultra-precision machining machine tool components need to operate outside critical frequencies of the machining system to avoid insufficient surface finish caused by vibrations. This particularly applies to tooling spindles as those are generally the component of a machine tool with low stiffness and damping values. Surface finish and shape of a machined part rely directly on the overall accuracy in motion of the tooling spindle over the entire machining parameter and speed range. Thus spindle designs for an operation outside critical frequencies combined with high stiffness and damping values are crucial for ultra-precision machining.For sufficient stiffness properties bearing gaps of gas bearings have to have a size of only a few microns and show a distinct sensitivity on temperature and for journal bearings also on speed. This again means that bearing properties change with temperature and speed. Considering a spindle system comprising a rigid shaft rotating in a radial/axial bearing system with changing stiffness and damping properties leads to a resonance speed map with changing rigid mode resonance speeds.This paper treats the influence of shaft speed and temperature on bearing gaps from which rigid mode resonance speeds for a shaft spinning in a bearing system are derived. The quoted influence of centrifugal load and temperature on bearing stiffness, damping and load capacity can be applied to any kind of gas bearing. Therefore the calculation of bearing stiffness, damping or load capacity is not treated in detail. The reader will be shown that there are simple design rules for air bearing systems and shafts of high-speed tooling spindles to avoid critical speeds through the entire speed range. Finally, methods of how to prove the initial design goals and how to verify dynamics of high-speed spindles in production will be presented to the reader. It will also be shown that there are production high-speed spindles available which do not include any critical speed within their speed range and thus show robust rotor dynamics with extremely low errors in motion.Procedures in design, validation and application treated in this paper shall give the reader not only design guidelines for spindles to avoid critical spindle speeds within its speed range, but also recommendations for machine tool builders and end-users for a machine operation taking machine and rotor dynamics into account. As the knowledge for this paper is predominantly based on the experience and work of the author himself only a few references are used. However presented testing results entirely confirm the approach presented in this paper.  相似文献   

7.
以高速磨削电主轴用角接触陶瓷球轴承B7005C/HQ1P4为研究对象,分别在油雾润滑和脂润滑下对轴承进行高速性能试验,通过对比分析转速、载荷与温升的关系研究了脂润滑轴承的高速性能。结果表明,在循环水冷却的条件下,转速低于40 000 r/min或dmn值小于1.44×106mm.r/min时,高速电主轴可以使用脂润滑陶瓷球轴承。  相似文献   

8.
超高速电主轴轴承的润滑条件分析   总被引:3,自引:0,他引:3  
通过分析超高速电主轴轴承内部润滑的基本特点,对主轴轴承在超高速运行条件下的内部润滑状态进行了分析,讨论了供油量、润滑方式、润滑油和轴承内部零件的运动等因素对轴承内部弹流油膜、温升等润滑状态的影响,在此基础上提出了超高速电丰轴轴承润滑的要求和基本条件,并进行了实际应用试验。  相似文献   

9.
The friction loss of an angular contact ball bearing is a key factor restricting the development of a high-speed motorized spindle. To quantitatively calculate the effects of the oil–air lubrication parameters on the friction loss of high-speed bearings, the drag resistance and the churning resistance generated by the movement of the rolling elements in the lubricant are theoretically modeled and the percentage volume of the lubricant in the bearing cavity (XCAV) is used to characterize the effects. The friction loss of bearings is tested by two novel methods: the free deceleration method and the energy-balance method. The experimental results show that the viscous resistance loss is a major component of bearing friction loss and oil–air lubrication parameters have important influence on it. A comparison of the theoretical calculations and the experimental results is used for deriving the empirical formula of XCAV with respect to the lubricant flow, gas pressure, rotating speed, and pitch diameter. The research results of this study have important significance for the measurement, prediction and reduction of the friction loss of high-speed bearings.  相似文献   

10.
The static and dynamic stiffnesses of spindle-bearing systems are examined. It is shown that for most general purpose spindle designs spring or hydraulically preloaded bearing arrangements can produce more rigid spindles than comentational bearing arrangements. It is also argued that adjustable preload enables bearing damping to be matched to the spindle-bearing system to give maximum dynamic stiffness. The RHP Variload bearing arrangement is introduced.  相似文献   

11.
潘建新  周志雄 《润滑与密封》2006,(6):162-164,186
介绍了几种不同形式高速主轴的结构、工作特点,如:滚珠轴承高速主轴、静压轴承高速主轴和磁浮轴承高速主轴,并对高速主轴的几种冷却润滑方式进行了分析.  相似文献   

12.
High speed machine tools are required to operate in a wide range of spindle rotational speeds with high stiffness and high accuracy. The stiffness of the spindle is largely dependent on the axial preload of the angular contact bearings. A large preload is required at lower range of speeds to provide sufficient stiffness for vibration-free heavy cutting. However, at higher speeds, it results in rapid temperature rise and reduces the life of the bearing. For optimum performance, it is essential that the bearing preload is reduced as the rotational speed increases. In this paper, an automatic variable preload system is proposed that changes the preload on the bearings as a function of rotational speed. This system is based on the use of centrifugal forces and requires little space inside the spindle. The performance of this mechanical system is determined using finite element modeling. A prototype of the system is fabricated and its performance is investigated using a specially devised test stand for direct measurement of the preload. The effectiveness of the proposed system in reducing the preload at higher speeds is demonstrated.  相似文献   

13.
Spindles experience problems related to increased power and velocity, and can have very high power consumption. The work reported here is aimed at improving design methods for high-performance spindles and machine-tool bearings, and is aimed at determining the influence, of the oil quantity supplying the contact, on power consumption and on contact temperature. A finite element program, TACT, can efficiently predict power loss and the thermal state of machine-tool bearings, and the remaining unknown in these thermo-piezo-viscous-elastic (TPVE) calculations is inlet oil film height. The authors address this problem and, within the context of this work, develop a high-speed ISO 50 spindle which has a thin-wall bearing housing, and is ‚thermally tuned‚, so avoiding thermal instability, while the preload stays constant. Its experimentally determined power consumption values agree well with the TPVE prediction for an assumed inlet film height of 0.5 μm.  相似文献   

14.
于浩  秦东晨  陈江义  袁峰 《机械传动》2021,45(3):99-103
圆柱滚子轴承的刚度特性会对机床动态性能产生较大影响.在双列圆柱滚子轴承力学分析的基础上,综合赫兹接触与润滑油膜对轴承刚度的影响,分析了不同工况以及润滑参数下的轴承刚度变化特性.分析结果表明,弹流润滑产生的润滑油膜会使轴承综合刚度下降;随着外载荷的增大,赫兹刚度与油膜刚度均有所提升,轴承综合刚度提高;提升轴承预紧量有利于...  相似文献   

15.
高速插齿机静压主轴实验设计   总被引:1,自引:0,他引:1  
根据高速插齿机静压主轴结构,设计出一套实验装置,进行静压支承的承载能力、润滑油压力、油膜厚度以及润滑油流量的测量。通过承载能力及油膜厚度结果,可以推算出支承的油膜刚度,通过实验验证仿真的准确性。  相似文献   

16.
高速主轴轴承油气润滑的应用试验   总被引:3,自引:0,他引:3  
高速主轴轴承油气润滑技术在国外一些工业化国家早已得到广泛应用。本文对高速主轴轴承油气润滑技术的应用进行了比较系统的试验研究,并与油雾润滑进行了对比应用试验。  相似文献   

17.
大功率陶瓷轴承电主轴单元的研制   总被引:2,自引:0,他引:2  
介绍了电主轴单元的优良特性及其应用,结合高速电主轴单元的研制实践,分析了大功率电主轴单元支承选用及预负荷的确定,探讨了电主轴单元的结构布局与设计,讨论了电主轴单元冷却与润滑系统的设置,通过实验测试电主轴的静动态性能,为加快开发新型电主轴及其在数控机床上的应用提供技术依据。  相似文献   

18.
节流器是液体静压主轴的核心元件,其节流特性对液体静压主轴的刚度和回转精度具有直接影响。针对现有节流器在主轴工作时节流特性不可控的不足,提出一款预压预调型可控节流器。在分析可控节流器工作原理和节流特性基础上,根据流体润滑理论,建立基于可控节流器的液体静压轴承承载性能的理论模型,研究可控节流器供油压力、弹簧刚度和控制油腔压力等参数对液体静压轴承承载性能的影响规律,并与固定节流液体静压轴承的承载性能进行对比。研究发现,在其他结构参数及工作参数一定的条件下,可控节流器能够显著地提高液体静压轴承的油膜刚度;在不同偏心率条件下,可控节流液体静压轴承的最佳油膜刚度对应的节流参数不同。在开发的液体静压电主轴试验台上进行了试验研究,通过对油腔压力和油膜刚度的理论计算值与试验测量值的对比,证实了可控节流方案的有效性。  相似文献   

19.
高性能电主轴单元集合了精密主轴轴承技术、高速电机驱动与控制技术、油气润滑与冷却技术、高速主轴轴承预紧等相关技术,其中高速主轴轴承预紧技术是实现高性能电主轴的关键技术之一.论文着重阐述了高速主轴轴承预紧力研究的目的和意义、轴承预紧力的研究现状以及本实验室对轴承施加预紧力的研究.  相似文献   

20.
在高转速轴承寿命试验机电主轴中选用了油气润滑方式,实施稳定的微量油润滑.通过实验确认,DMN达150mm.r/min,解决了油雾润滑污染环境的问题,使环境质量良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号