首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
锂离子电池炭负极材料结构及嵌锂机理研究进展   总被引:1,自引:0,他引:1  
炭材料取代金属锂作为负极后,锂离子电池在商业应用上取得了成功,并以其高能量密度在各种电子设备上广泛使用.锂离子电池的性能很大程度上取决于炭负极材料的微观结构,不同种类的炭材料其电化学性能有很大差别.对近几年所研究的可逆储锂炭材料进行了综述,着重总结了炭负极材料的种类、结构及其嵌锂机理,并展望了锂离子电池炭负极材料的研究进展.  相似文献   

2.
锂离子电池负极材料的研究进展   总被引:1,自引:0,他引:1  
锂离子电池因其质量轻、能量密度较高,迎合了家用电器和通讯设备向小型化、微型化方向发展的需要.锂离子电池能够成功应用的关键在于嵌入与脱出可逆的锂离子负极材料的制备.因此,对负极材料的研究非常重要.主要介绍了锂离子电池的电化学反应原理、一般特性及电池负极材料的最新研究进展.其中,对最新的负极材料——纳米碳管及其它负极材料的研究情况,进行了深入的阐述和分析,同时,也提出了各种负极材料在研究中存在的问题及今后的发展前景.  相似文献   

3.
谭毅  薛冰 《无机材料学报》2018,33(5):475-482
锂离子电池作为一种动力能源, 在电动汽车和各种储能系统中有着良好的应用前景。尖晶石结构的钛酸锂(Li4Ti5O12)负极材料具有较高的脱嵌锂电位平台、优异的循环稳定性、以及突出的安全性能, 被认为是一种非常有潜力的锂离子电池负极材料, 在锂离子动力电池中具有巨大的发展潜力。然而, 尖晶石型Li4Ti5O12存在着本征导电率低, 理论容量小等缺陷, 极大地限制了其规模化应用, 需要进一步改善和提高。本文总结了尖晶石型Li4Ti5O12材料在结构形貌、制备方法和性能方面的研究进展, 深入分析和讨论了离子掺杂、碳表面改性和纳米化等改性方法对尖晶石型Li4Ti5O12综合电化学性能的改善效果, 并展望了尖晶石型Li4Ti5O12作为锂离子电池负极材料未来的发展方向。  相似文献   

4.
纳米碳管用于锂离子电池负极材料的研究   总被引:1,自引:0,他引:1  
翟秀静  符岩  储刚  白斌 《功能材料》2005,36(8):1248-1250
采用氧化法提纯了煤焦化工业副产品中的纳米碳管,采用X射线衍射法对纳米碳管的结构进行了研究,透射电镜研究了纳米碳管的形貌。提纯的纳米碳管d002为0.3496nm,具有类似石墨的结构和较高的石墨化度。研究了纳米碳管的电化学性能,其首次放电比容量达584.3mAh/g;添加石墨粉组成了20%的纳米碳管和80%的石墨粉的体系作为锂离子电池负极材料,其首次放电比容量为490.1mAh/g,并有较好的循环性能。  相似文献   

5.
将碳纳米管用于锂离子电池负极材料,用循环伏安及充放电实验研究了电极的性能.结果表明,碳纳米管用作锂离子电池负极,具有较高的储锂容量,首次放电容量达560mAh/g,但首次不可逆容量损失也大,高达430mAh/g.经过第1次充放电的容量损失后,随后各次的容量损失很小,碳纳米管的循环性能趋于稳定.  相似文献   

6.
简要概述了碳纳米管的结构、嵌锂机理;通过对比分析,综述了碳纳米管的电化学性能,指出了其作为锂离子电池负极材料的优点与不足;详细介绍了作为负极材料的碳纳米管改性修饰方法及碳纳米管复合材料研究现状;并根据碳纳米管及其复合材料的各种特征和综合分析,指出了其作为一种储能材料的发展方向。  相似文献   

7.
以3.98mol/L的四氯化钛为前驱体溶液,采用内凝胶法制备了具有尖晶石结构的球形钛酸锂(Li4Ti5O12)粉末。通过XRD、SEM及电化学性能测试等分析手段表明,合成的Li4Ti5O12材料均为纳米一次粒子(晶粒)组成的球形二次粒子(颗粒),且具有较大的比表面积。以这种流动性好、粒径分布均匀、结晶度好的球形钛酸锂为正极材料和Li片为负极材料组成的锂离子电池具有平稳的充放电电压平台和优异的循环性能。在1.0~2.5V充放电,其首次放电容量为173.8mAh/g,经30次充放电循环后,其放电比容量仍有170.2mAh/g。  相似文献   

8.
综述了锂离子电池纳米合金负极材料的研究进展.讨论了该类材料的电化学性能、制备工艺及发展前景.  相似文献   

9.
综述了锂离子电池氧化物负极材料的研究进展,介绍了各材料的储锂机理、一般特点及最新研究成果.其中,对研究比较多的锡基氧化物材料及纳米材料进行了深入阐述.同时,探讨了氧化物负极材料目前存在的问题及解决的办法,对该类材料的发展趋势进行了展望.  相似文献   

10.
锂离子电池纳米负极材料的研究和开发   总被引:1,自引:0,他引:1  
锂离子电池近几年发展非常迅速,纳米材料和纳米技术也应用于锂离子电池中。本文综述纳米材料(主要包括纳米金属及纳米合金、纳米氧化物、碳纳米管、具有纳米孔结构的无定形碳材料和天然石墨等)在负极材料方面的最新研发情况。纳米材料的特有性能使其可逆容量高于目前商品化的负极材料,但纳米合金负极材料的产业化还有待于进一步的研究。特别是循环稳定性;碳纳米管的制备和纯化成本过高,不宜产业化,同时理论方面有待于进一步研究,以提高其电化学性能;具有纳米孔的无定形碳材料制备温度低,容量也较高,但是对于产业化而言,循环性能和电压滞后现象有待于进一步的改进;具有纳米孔的天然石墨负极材料不仅容量高、制备比较简单、成本低,而且具有良好的循环性能,可望达到产业化要求。  相似文献   

11.
采用XRD,SEM,IR光谱和物理测试等方法,研究了碳纳米粉的结构与性能及电化学性能。结果表明碳纳米粉的粒度为30nm,具有石墨结构,碳纳米粉的首次放电比容量为391.5mAh/g,首次循环可逆比容量是336.0mAh/g,不可逆容量仅是21.9mAh/g。碳纳米粉的循环伏安曲线的峰形与峰位基本相同,没有还原电流峰。结果显示碳纳米粉适用于做锂离子电池负极材料。  相似文献   

12.
锂离子电池纳米正极材料的研究进展   总被引:1,自引:1,他引:1  
综述了近年来纳米技术在锂离子电池正极材料中应用的最新进展,重点阐述了纳米LiCoO2、LiMn2O4及LiFePO4等正极材料的制备及其性能.纳米正极材料的制备方法主要有溶胶-凝胶法、共沉淀法、模板法及水热法等,电极材料的纳微米化对锂离子电池的电化学性能和循环性能的改善有着显著的意义.  相似文献   

13.
张海朗  王文继 《功能材料》2003,34(2):130-132
综述了迄今为止关于镁离子二次电池正极材料的研究。镁离子二次电池称得上是有望用于电动汽车的“绿色”蓄电池。它的原理与锂离子二次电池的相同;但在某些方面比锂离子二次电池更具优势。本文也对今后该领域的研究方向提出了意见。  相似文献   

14.
锂离子电池正极材料镍酸锂的合成   总被引:3,自引:0,他引:3  
研究了锂离子正极材料镍酸锂(LiNiO2)的合成条件,主要考查了原料Li/Ni摩尔比、反应气氛、预处理工艺和热处理方式对产物的影响,是到了LiNiO2的最佳合成条件:原料为LiOH.H2O和β-Ni(OH)2.Li/Ni摩尔比为1.05:1,反应气氛为氧气,预处理方式为混合球磨后压块成型,热处理方式为两次热处理,经X射线衍射分析,合成的镍酸锂为层状结构,经电化学测试,其具有优良的电化学性能。  相似文献   

15.
介绍一种新型的可用于锂离子电池的锂盐:LiODFB(lithium oxalyldifluoroborate).LiODFB独特的化学结构,使其结合了双乙二酸硼酸锂(LiBOB)及四氟硼酸锂(LiBF4)的优势.与LiBOB相比,LiODFB在碳酸酯中的溶解性和溶剂的黏度有了明显改善,从而使锂离子电池具有更好的低温性能和倍率放电性能.而与LiBF4相比,LiODFB能促进稳定固态电解液界面(solid electrolyte interface,SEI)的形成,改善了锂离子电池的高温性能.该种新型锂盐还具有以下优点:与金属锂的化学稳定性好,在高电位下能够很好地使铝箔得到钝化和提高锂离子电池安全性能及抗过充的能力.这些性能使得LiODFB成为一种极有可能替代LiPF6的新型锂盐.  相似文献   

16.
针对SnO2锂离子电池负极材料长循环性能差的缺点,把非晶SiO2引入SnO2材料中,形成SnO2-SiO2纳米复合材料。采用聚苯乙烯(PS)胶晶作为模板,制备出三维有序大孔SnO2-SiO2纳米复合材料。研究结果表明,3DOM SnO2材料晶体结构和3DOM SnO2-SiO2材料相似,但是加入SiO2以后,3DOM SnO2-SiO2材料的长循环性能得到显著提高。在500 mAh/g的电流密度下循环100次,此时加0%Si的3DOM SnO2-SiO2材料的充电比容量急剧衰减为147 mAh/g,加5%Si的3DOM SnO2-SiO2材料的充电比容量达654 mAh/g,此外500次循环后加5%Si的3DOM SnO2-SiO2材料充电比容量增至728 mAh/g。这些结果表明SiO2能够改善3DOM SnO2材料长循环稳定性。  相似文献   

17.
锂离子二次电池负极材料的研究综述   总被引:1,自引:0,他引:1  
总结了在碳材料、合金材料和复合材料等3个锂离子电池负极材料研发的主导方向上的开发情况和它们各自特点,描述了目前的研究所面临难题,给出了锂离子电池负极材料研发取得重大突破的可能途径和建议.  相似文献   

18.
Spent lithium ion battery is a useful resource of cobalt. In this paper, cobalt was recovered by a chemical process based upon the analysis of the structure and composition of the lithium ion battery. X-ray diffraction results show that cobalt oxalate and cobaltous sulfate have been obtained in two different processes. Compared with the cobaltous oxalate process, the cobaltous sulfate process was characterized by less chemical substance input and a cobalt recovery rate of as much as 88%. A combination of these two processes in the recycling industry may win in the aspects of compact process and high recovery rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号