首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
针对高速高精加工中传统的NURBS算法沿曲线方向进行单一插补时,曲线的弧长与参数之间无精确的解析关系、进给速度又总是受到非线性变化的曲线曲率约束,导致基于S型加减速进行NURBS插补时,曲线长度的实时计算以及对减速点的预测十分困难,无法获得曲线余下部分的速度约束信息,而且在进行实时插补的过程中可能出现计算负荷过大、导致数据饥饿的现象,影响整个系统的实时性。针对以上问题,提出了一种寻回插补实时算法。该算法不依赖于曲线弧长的精确计算,采用正向与反向同步插补的方法。在前瞻插补模块中先对曲线进行逆向插补,确定正反向插补的校验点,以及正向插补所需的相关信息;在实时插补模块中,通过对比校验点的速度,判断是调用逆向插补的数据还是继续进行正向插补,从而实现满足速度约束条件的最优插补。该算法无须求解高次方程并可以保证以确定的速度通过曲率极值点和曲线终点,很好地保证了插补过程中的实时性。通过插补实例证明了算法简单高效、适应性以及实时性好,能够满足高速高精度数控加工的要求。  相似文献   

2.
NURBS曲线的弧长与参数之间无精确的解析关系,导致基于S型加减速进行插补时,曲线长度计算和减速点的预测十分困难,为此提出了新S型反向寻优插补算法。首先建立新S型加减速模型,将分段后的曲线逐段取出,利用新S型算法进行速度规划。接着对速度敏感点进行校正,并反向插补寻找减速点。通过插补实例证明,该算法适应性、实时性较好,能够满足高速高精度数控加工的要求。  相似文献   

3.
为兼顾插补含尖角NURBS曲线的精度与速度,提出尖角分割且速度修正插补算法。由插补弦高误差限、法向加速度及其导数约束,得满足插补精度及机床动力学性能的临界曲率;用大于临界曲率的局部极大曲率及临界曲率分割NURBS曲线为是否包含尖角的若干子段;用S曲线加减速算法规划各子段进给速度,并用段间速度及位移协调关系修正各段加速度及其导数,使各段加减速时间为整数倍插补周期。在相同约束条件下,分别用曲率单调无速度修正、尖角分割无速度修正及尖角分割有速度修正算法,规划一条含大曲率尖角NURBS曲线插补速度,并用一阶泰勒级数展开算法插补该曲线。对比结果表明尖角分割且有速度修正算法可稳定得到较高插补精度,因此该算法可用于含大曲率尖角NURBS曲线高速度高精度加工。  相似文献   

4.
提出一种精确计算插补步长的双NURBS曲线随动插补算法。首先由曲面数控加工的离散刀位数据分别拟合出刀尖点和刀轴点NURBS曲线,并建立两条曲线插补参数间的随动关系模型;然后采用辛普森积分法计算出曲线的总弧长,进行插补运动的加减速规划;再以刀尖点NURBS曲线为基准确定插补参数,采用辛普森法确定各插补周期的进给步长及插补点坐标;最后依据随动关系模型获得刀轴点NURBS曲线对应的插补参数,完成曲面加工刀路规划的刀具位姿插补。仿真实验表明,与同一参数插补法相比,参数随动法可以获得更加稳定的等距效果,便于实时控制插补过程中的刀轴位置和姿态。  相似文献   

5.
基于传动系统动力学的NURBS曲线插补算法   总被引:3,自引:1,他引:2  
刘宇  赵波  戴丽  刘杰 《机械工程学报》2009,45(12):187-191
对机床传动系统、伺服驱动系统和数控插补模块进行动力学建模和求解。提出一种新的NURBS插补算法,按照进给率自适应轨迹规划算法进行当前插补周期的速度设定,并且根据曲线当前位置的曲率特性,进行基于曲率的最大速度限定,通过求解动力学模型,获得按照这一速度进行插补时系统需要的最大驱动力,若该驱动力超过系统能够提供的最大驱动力,则再次按照用户设定的加速度进行减速,获得的速度作为指令速度,按照一阶泰勒展开近似进行插补点的计算。该算法不仅在NURBS曲率较大的区域自动降低进给速度,保证要求的弦误差,而且使输出的插补速度指令区域平滑,保证不会出现插补输出的位置值系统无法进行位置控制造成更大的加工误差。  相似文献   

6.
为满足现代数控加工的高速度、高精度要求,提出基于7段式S曲线加减速全程规划的NURBS曲线自适应分段插补算法。该算法根据NURBS曲线几何形状将其自适应分段,并计算曲线段各项参数值、对应S曲线加减速规划(速度规划为17种类型)中加减速类型和自适应调整速度曲线加减速时间。在固定插补周期下,与单独自适应算法、5段式S曲线加减速控制方法的仿真结果相比,在满足加速度与加加速度限制条件,且最大弦高误差不超过0.5μm时,该算法插补精度高于单独自适应算法,与5段式S曲线加减速控制方法近似,且其全程平均进给速度比5段式S曲线加减速控制方法平均进给速度提高21.7%,达到594mm/s。  相似文献   

7.
为提高NURBS插补速度的平滑性以及针对传统插补参数计算方法精度低的问题,研究了曲率约束下的平滑进给速度规划和基于参数增量补偿的插补点参数计算方法。基于曲率约束获得自适应进给速度,依据自适应速度对曲线进行分段。改进了传统的S形加减速规划方法,对满足合并条件的相邻区间进行综合规划,并且对速度超限的问题做出调整。基于二阶Runge-Kutta法求取下一插补点参数的初始增量值,采用后向差分法简化计算。利用圆弧近似求取参数增量的补偿值,最终获得下一插补点的参数。通过仿真测试了所提方法的性能,速度曲线平滑且各指标满足约束条件,进给速度波动也更小。测试试验对比了所提方法与传统方法,研究结果证明了该算法的有效性。  相似文献   

8.
针对目前NURBS曲线插补中加减速控制方法不足的问题,实现了加工过程中进给速度的平滑过渡,提出了一种新的NURBS曲线插补方法,包括速度规划和实时插补两个方面。速度规划采用了一种基于曲率自适应的简化计算的S型加减速方法,并结合"双向插补"的思想实时预测减速点,防止产生过大的弓高误差;实时插补则利用Muller插值和Newton迭代法计算了下一周期的插补参数,进而求出了下一时刻到达的空间坐标点。最后与已有插补方法进行了仿真分析比较。研究结果表明,该方法能保证加速度连续和加加速度有界,有效减少弓高误差和进给速度波动,提高机床运行的平稳性。  相似文献   

9.
数控技术标志着现代制造业的核心,数控插补模块是数控技术中最为重要的模块之一。NURBS曲线是自由曲线的一种,由于其NURBS曲线的诸多优越性,使其能够很好的应用到数控领域中。NURBS曲线插补及加减速控制的精度和速度是CNC系统的重要指标。通过分析NURBS曲线的插补原理,提出了基于Taylor展开公式逼近NURBS样条参数。同时考虑速度波动于曲率的关系,弦误差与插补周期的关系,根据弓高误差调节进给速度,能够将进给速度波动控制在理想水平。  相似文献   

10.
制造业对加工过程中进给速度和加速度的平稳变化有着严格要求,为减小速度突变时对机床及刀具产生的冲击,确保加工精度符合要求,提出一种基于细菌觅食算法优化的非均匀有理B样条(NURBS)曲线S型加减速约束插补方法,该方法利用细菌觅食优化算法对NURBS曲线的控制点变量个数及关键位置信息进行优化,构建出更为平滑的NURBS曲线,减小计算负荷,并依据所构图形对弓高误差的要求,确定出每个插补点的进给速度,寻找确定速度改变点及速度波动位置,进而确定加减速度关键点,进行S型加减速控制,从而保证加工时速度稳定过渡,加工曲线平滑精确。该方法通过仿真及实验得以验证。  相似文献   

11.
This paper presents a real-time control algorithm based on Taylor’s expansion for implementing variable feed rate non-uniform rational B-spline (NURBS) curve interpolators using a digital signal processor for precision CNC machining. To efficiently compute the NURBS curve and its derivatives in real-time, an effective method is proposed. The variable feed rate NURBS curve interpolator can be used to realise the ACC/DEC before feed rate interpolation in which the ACC/DEC (acceleration/deceleration) planning on the feed rate command executes before the interpolation takes place, so that the path command errors caused by conventional ACC/DEC planning using the post feed rate interpolation can be effectively eliminated. To demonstrate the performance of the proposed algorithm, an X-Y table driven by two servomotors is controlled to track command paths represented by multiple blocks of NURBS curves. Experimental results verify the effectiveness of the proposed method.  相似文献   

12.
为提高五轴非均匀有理B样条的插补精度,减轻段间转接时对机床的机械冲击,提出了一种速度前瞻控制处理方法.采用曲率圆逼近的方法建立了插补误差计算模型,并推导出满足插补误差要求的最小曲率半径与进给速度间的关系.采用数值分析方法预先计算出减速点的参数值,对样条插补进行了加减速前瞻规划处理.实时插补时对样条曲线上曲率半径较小的地方进行减速处理,以提高插补曲线的逼近精度.实例证明,该方法能有效降低插补误差和段间转接时的加速度,具有良好的实时性,可以应用到实际的数控系统中.  相似文献   

13.
以NURBS曲线deBoor递推插补算法为基础,针对NURBS曲线速度处理的特殊性,建立了一种NURBS曲线自适应速度控制模型,该模型分为速度自适应控制和插补前加减速处理两部分。以deBoor算法为基础对整个插补周期的弓高误差以及切向和法向加速度进行实时监控,分析了误差产生的原因并进行了相应的速度控制;以插补前直线加减速为例引入NURBS反向插补的概念,解决了NURBS曲线减速区长度计算问题。实验结果表明,该模型满足实际的NURBS曲线插补的需要。  相似文献   

14.
Parametric interpolation has many advantages over the traditional linear or circular interpolation in computer numerical control (CNC) machining. The existing work in this regard is reported to have achieved constant feedrate, confined chord error and limited acceleration/deceleration in one interpolator. However, the excessive jerk still exists due to abrupt change in acceleration profile, which will cause shock to the machine as well as deteriorate the surface accuracy. In this paper, an adaptive interpolation scheme incorporating machine’s dynamics capability consideration is proposed and illustrated in details. In the proposed algorithm, the commanded feedrate is maintained at most of the time and adaptively reduced in large curvature areas to meet the demand of the machining accuracy requirement, while at the same time, the acceleration and jerk values are limited within the machine’s capabilities during the whole interpolation process. It ensures a high machining accuracy, eliminates the phenomenon of overshoot/undershoot and reduces mechanical shock to the machine tools. The real-time performance of this interpolator is also measured to demonstrate its practical application. Two non-uniform rational B-spline (NURBS) curve interpolation experiments are provided to verify the feasibility and advantages of the proposed scheme.  相似文献   

15.
Methodologies for converting short line segments into parametric curves were proposed in the past. However, most of the algorithms only consider the position continuity at the junctions of parametric curves. The discontinuity of the slope and curvature at the junctions of the parametric curve might cause feedrate fluctuation and velocity discontinuous. This paper proposes a look-ahead interpolation scheme for short line segments. The proposed interpolation method consists of two modules: spline-fitting and acceleration/deceleration (acc/dec) feedrate-planning modules. The spline-fitting module first looks ahead several short line segments and converts them into parametric curves. The continuities of the slope and curvature at each junctions of the spline curve are ensured. Then the acc/dec feedrate-planning module proposes a new algorithm to determine the feedrate at the junction of the fitting curve and unfitted short segments, and the corner feedrate within the fitting curve. The chord error and acceleration of the trajectory are bounded with the proposed algorithm. Simulations are performed to validate the tracking and contour accuracies of the proposed method. The computational efforts between the proposed algorithm and the non-uniform rational B-spline (NURBS)-fitting technique are compared to demonstrate the efficiency of the proposed method. Finally, experiments on a PC-based control system are conducted to demonstrate that the proposed interpolation method can achieve better accuracy and reduce machining time as compared to the approximation optimal feedrate interpolation algorithm.  相似文献   

16.
Modern motion control adopts acceleration/deceleration before interpolation (ADBI) motion planning to eliminate path command errors. However, the individual velocity profiles might not be continuous at the junction of the blocks. Acceleration/deceleration after interpolation (ADAI) method may provide an alternative for solving the discontinuous problems, but it causes path command errors. In this paper, an integrated acceleration/deceleration interpolation (IAD) scheme which integrates the ADBI and ADAI modules is proposed. The ADBI provides a look-ahead function which plans the feedrate profiles based on chord errors, command errors, curvatures, and acceleration limits. Within the look-ahead function, the command error equation is utilized to determine the feedrate at the junction of adjacent blocks. Then the ADBI performs non-uniform rational B-spline (NURBS) interpolation using the planned feedrate profile and outputs the position points to the ADAI module. The ADAI module processes the points by a digital convolution technique such that the continuity of the block junction velocity is ensured. Finally, the IAD is applied to the multi-block NURBS interpolation to validate its effectiveness. Simulations and experiments are conducted to demonstrate the IAD scheme. It is shown that the IAD scheme can reduce the acceleration significantly at the junctions of the blocks under the given tolerance of the command error. Furthermore, the proposed algorithm can improve tracking and contour accuracies as compared to the hybrid multi-blocks look-ahead approach.  相似文献   

17.
In this paper, an adaptive parametric curve interpolator with a real-time look-ahead function is developed for non-uniform rational B-spline curves (NURBS) interpolation, which considers the maximum acceleration/deceleration of the machine tool. In the proposed interpolator, both constant feedrate and high accuracy are achieved while the inconsistency of feedrate is reduced dramatically as well. In order to deal with the acceleration/deceleration around the feedrate sensitive corners, a look-ahead function is introduced to detect and adjust the feedrate adaptively. Two cases were respectively studied to evaluate the feasibility of the developed interpolator: one is for feedrate sensitive arc corner; the other is for feedrate sensitive sharp corner.  相似文献   

18.
根据计算机数字控制系统的实际性能和非均匀有理B样条曲线的几何特性,设计了一种能够实现加速度平滑过渡的高效非均匀有理B样条曲线插补器。首先,该插补器利用快速插补计算模拟实际加工过程,找到加速度不连续的点;然后,采用S曲线加减速方法向后逆求减速点,并通过约束速度和加速度的方法,预估S曲线加减速第三阶段起点,不仅提高了所求减速点位置的精度,还实现了减速点处加速度的连续性。仿真结果表明,该插补器能在保证加工精度的前提下,以较高效率实现加速度的平滑过渡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号