首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The effect of cotton fabric pretreatment with biopolymer chitosan (CHT) on deposition of colloidal triangular silver nanoplates was studied. Also, the influence of deposited silver nanoparticles on color and antimicrobial activity of cotton fabrics was evaluated. Characterization of colloidal silver nanoparticles as well as silver nanoparticles deposited on cotton fabrics was performed using electron microscopy (TEM and FESEM), XRD analysis, atomic absorption spectroscopy, UV–Vis absorption, and reflectance spectroscopy. The cotton fabric turned from white to blue color upon deposition of triangular silver nanoplates. Antimicrobial activity of CHT pretreated cotton fabric impregnated with silver nanoparticles was tested against Gram-negative bacteria Escherichia coli, Gram-positive bacteria Staphylococcus aureus, and fungi Candida albicans. Deposited silver nanoparticles imparted excellent antimicrobial properties to cotton fabric. The standard sterilization procedure of cotton fabric for antimicrobial activity testing resulted in color change of the fabric from blue to yellow. This color change is most likely consequence of transformation of triangular silver nanoplates into nanodiscs and/or their agglomeration into spheroids.  相似文献   

2.
This paper deals with the antibacterial efficacy of nanosized silver colloidal solution on the cellulosic and synthetic fabrics. Two kinds of Bacteria; Gram-positive and Gram-negative, were used. TEM observation of silver nanoparticles showed their shape, and size distribution. The particles were very small (2–5 nm) and had narrow distribution. SEM images of treated fabrics indicated silver nanoparticles were well dispersed on the surfaces of specimens. WAXS patterns did not show any peak of silver as the fabric had very small quantity of silver particles. However, ICP-MS informed the residual concentration of silver particles on fabrics before/after laundering. The antibacterial treatment of the textile fabrics was easily achieved by padding them with nanosized silver colloidal solution. The antibacterial efficacy of the fabrics was maintained after many times laundering.  相似文献   

3.
The fungus, Aspergillus flavus when challenged with silver nitrate solution accumulated silver nanoparticles on the surface of its cell wall in 72 h. These nanoparticles dislodged by ultrasonication showed an absorption peak at 420 nm in UV-visible spectrum corresponding to the plasmon resonance of silver nanoparticles. The transmission electron micrographs of dislodged nanoparticles in aqueous solution showed the production of reasonably monodisperse silver nanoparticles (average particle size: 8.92 ± 1.61 nm) by the fungus. X-ray diffraction spectrum of the nanoparticles confirmed the formation of metallic silver. The Fourier transform infrared spectroscopy confirmed the presence of protein as the stabilizing agent surrounding the silver nanoparticles. These protein-stabilized silver nanoparticles produced a characteristic emission peak at 553 nm when excited at 420 nm in photoluminescence spectrum. The use of fungus for silver nanoparticles synthesis offers the benefits of eco-friendliness and amenability for large-scale production.  相似文献   

4.
Here we communicate our experimental results on the synthesis of silver nanoparticles in solution and thin films using silver nitrate and poly vinyl alcohol (PVA) mixture at different concentrations and different laser irradiations. Detailed studies were carried out by varying pulse width, wavelength, exposure time, and energy of the laser. Formation of nanoparticles was confirmed through color change from transparent to yellow. Irradiated solutions and thin films at different concentrations showed plasmon peak in the absorption spectra. Formation of different sized nanoparticles at different energies with peak shift is observed. Transmission electron microscope (TEM) results confirmed the formation of nanoparticles with size of the particles varying from 2 to 200 nm. Formation of silver nanoparticles with hexagonal and different shapes were observed in particular with 355 nm laser irradiation. Influence of wavelength, pulse width, exposure time, and energy in the synthesis of silver nanoparticles is highlighted. Electron diffraction patten of a single nanoparticle in TEM showed polycrystallinity with cubic nature for the silver nanoparticles prepared. We also compared the linear and nonlinear absorption properties of the freshly prepared nanoparticles with nanoparticles solution left in a shelf for a long period of time.  相似文献   

5.
In this study, silver nanoparticles were prepared using silver nitrate as the metal precursor, starch as protecting agent, and sodium borohydride (NaBH4) as a reducing agent by the chemical reduction method. The formation of the silver nanoparticles was monitored using ultraviolet-visible absorption spectroscopy, cyclic voltammetry, and particle size analyzer and characterized by transmission electron microscopy (TEM) and x-ray diffraction (XRD). Synthesis of nanoparticles were carried out by varying different parameters, such as reaction temperature, concentration of reducing agent, concentration of silver ion in feed solution, type and concentration of the stabilizing agent, and stirrer speed expressed in terms of particle size and size distribution. Dispersion destabilization of colloidal nanoparticles was detected by Turbiscan. It was observed that size of the starch stabilized silver nanoparticles were lower than 10 nm. The microbial activity of synthesized silver nanoparticles was examined by modified Kirby-Bauer disk diffusion method. Silver nanoparticles were tested for their antibacterial activity against Gram negative bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Gram positive bacteria such as Staphylococcus aureus and Staphylococcus epidermidis. High bacterial activity was observed at very low concentrations of silver (below 1.39 μg/ml). The antifungal activity of silver nanoparticles has been assayed against Candida albicans.  相似文献   

6.
In this study, cupric oxide (CuO) nanoparticles were prepared using sonochemical method. The prepared nanoparticles were studied using X‐ray diffraction (XRD) pattern, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) methods. The colloidal chitosan (CS) solution was prepared using ultrasound irradiation method and simultaneously mixed with CuO nanoparticles. The coatings of colloidal solution with and without CuO nanoparticles were studied through TEM images. The cotton fabrics were separately soaked in the prepared nanoparticle‐containing (hybrid) solutions by sonication method followed by pad‐dry‐cure method. The structural, functional, and morphological analyses of the coated and uncoated fabrics were performed using XRD, FTIR‐attenuated total reflectance, and SEM analyses, respectively. The hybrid‐coated cotton fabrics showed better antibacterial activity against Staphylococcus aureus and Escherichia coli. The bioactivity performance of the coated fabrics was in the order of CuO‐coated fabric > CS‐coated fabric.Inspec keywords: cotton fabrics, nanoparticles, antibacterial activity, transmission electron microscopy, Fourier transform spectroscopy, infrared spectroscopy, scanning electron microscopy, copper compoundsOther keywords: antibacterial activity, hybrid chitosan‐cupric oxide nanoparticles, cotton fabric, cupric oxide nanoparticles, sonochemical method, X‐ray diffraction, XRD pattern, Fourier transform infrared spectroscopy, FTIR spectroscopy, scanning electron microscopy, SEM, transmission electron microscopy, TEM methods, colloidal chitosan solution, ultrasound irradiation method, colloidal solution, TEM images, cotton fabrics, nanoparticle‐containing solutions, sonication method, pad‐dry‐cure method, morphological analyses, structural analyses, functional analyses, FTIR‐attenuated total reflectance, SEM analyses, hybrid‐coated cotton fabrics, Staphylococcus aureus, Escherichia coli, bioactivity performance, CuO  相似文献   

7.
Functional finishing in cotton fabrics using zinc oxide nanoparticles   总被引:1,自引:0,他引:1  
Nanotechnology, according to the National Nanotechnology Initiative (NNI), is defined as utilization of structure with at least one dimension of nanometer size for the construction of materials, devices or systems with novel or significantly improved properties due to their nano-size. The nanostructures are capable of enhancing the physical properties of conventional textiles, in areas such as anti-microbial properties, water repellence, soil-resistance, anti-static, anti-infrared and flame-retardant properties, dyeability, colour fastness and strength of textile materials. In the present work, zinc oxide nanoparticles were prepared by wet chemical method using zinc nitrate and sodium hydroxide as precursors and soluble starch as stabilizing agent. These nanoparticles, which have an average size of 40 nm, were coated on the bleached cotton fabrics (plain weave, 30 s count) using acrylic binder and functional properties of coated fabrics were studied. On an average of 75%, UV blocking was recorded for the cotton fabrics treated with 2% ZnO nanoparticles. Air permeability of the nano-ZnO coated fabrics was significantly higher than the control, hence the increased breathability. In case of nano-ZnO coated fabric, due to its nano-size and uniform distribution, friction was significantly lower than the bulk-ZnO coated fabric as studied by Instron® Automated Materials Testing System. Further studies are under way to evaluate wash fastness, antimicrobial properties, abrasion properties and fabric handle properties.  相似文献   

8.
Metallization is one of the finishing processes in textile treatment that can produce multifunctional effects. The present study dealt with the development of an antibacterial polyester-knitted fabric via facile and green impregnation of silver nanoparticles (SNPs). This was done by applying a polymeric foundation on the polyester-knitted fabric by simply dip-coating in the aqueous solution of dopamine. Then the SNPs were in situ fabricated and impregnated on the surface of polydopamine-modified polyester-knitted fabric in an aqueous solution of AgNO3 at room temperature. Thus, a multi-functional finishing of polyester-knitted fabric was done. The Fourier transform infrared spectroscopy was done to confirm the polymer attachment. Scanning electron microscopy equipped with energy dispersive X-ray was done to confirm the presence of SNPs on treated fabric. The crystallography of the treated surface was examined by X-ray diffraction. The antibacterial properties of treated fabrics against broad spectrum bacterial strains were investigated and found significant.  相似文献   

9.
Silver nanoparticles have been prepared through the chemical reduction of silver ions by ethanol using linoleic acid as a stabilising agent. This colloidal solution shows an absorption band in the visible range with an absorption peak at 421 nm. The peaks in the X-ray diffraction (XRD) pattern matches well with the standard values of the face-centred-cubic form of metallic silver. Transmission Electron Microscope (TEM) micrograph shows a nearly uniform distribution of the particles with an average size of 8 nm. This linoleic acid-capped silver nanoparticles show antimicrobial activity against Escherichia coli and Staphylococcus aureus.  相似文献   

10.
Green synthesis of silver nanoparticles (AgNPs) was accomplished using different volumes of cauliflower extract and 0.001 M silver nitrate solution at 80°C for 15 min. A brownish‐red solution of AgNPs formed was tested by ultraviolet–visible absorption spectroscopy, Fourier‐transform infrared (FTIR), scanning electron microscopy (SEM), and X‐ray diffraction (XRD). Surface plasmon resonance of AgNPs appeared at 416 nm. Also, the kinetic of AgNPs formation was studied and follows a sigmoidal pattern. Storing time was studied for the freshly prepared AgNPs after 60 days. FTIR analysis shows the adsorption of active components on AgNPs surface, and these components are responsible for reduction besides working as a stabiliser like a capping agent, also FTIR analysis of AgNPs after storage showed no change in peaks location. The SEM exhibited a globular shape of AgNPs, and the particle size ranged from 25 to 100 nm, while the XRD particle size calculation was 25 nm with cubic phase lattice. The antibacterial activity was tested against Gram‐positive and ‐negative bacteria showed an inhibition zone of 16–27 mm and the antibacterial activity tested for the same bacteria after storage for about 10 months showed an inhibition zone of 6–10 mm.Inspec keywords: microorganisms, reduction (chemical), nanofabrication, surface plasmon resonance, silver, transmission electron microscopy, nanoparticles, particle size, visible spectra, ultraviolet spectra, adsorption, antibacterial activity, scanning electron microscopy, X‐ray diffraction, Fourier transform infrared spectra, nanomedicineOther keywords: antibacterial activity, green synthesis, silver nanoparticle, brownish‐red solution, surface plasmon resonance, FTIR analysis, active components, silver nitrate solution, ultraviolet‐visible absorption spectroscopy, AgNP surface, cauliflower extract, Fourier‐transform infrared spectroscopy, scanning electron microscopy, SEM, X‐ray diffraction, XRD, sigmoidal pattern, storing time, adsorption, stabiliser, capping agent, globular shape, particle size, cubic phase lattice, Gram‐positive bacteria, Gram‐negative bacteria, inhibition zone, reduction, time 60.0 d, temperature 80.0 degC, time 15.0 min, wavelength 416.0 nm, Ag  相似文献   

11.
Silver nanoparticles were synthesized through UV photo-reduction of silver nitrate aqueous solution, containing ethanol and sodium dodecyl sulfate (SDS) using an UV digester equipped with high pressure mercury lamp of 500 W. The synthesized nanoparticles were characterized by UV–vis spectroscopy (UV–vis), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The formation of silver nanoparticles was confirmed from the appearance of surface plasmon absorption maxima at 418 nm. TEM showed the spherical nanoparticles with size in 23–67 nm (average 45 ± 10 nm). The silver nanoparticles were stable for more than 8 months. The antibacterial activity of these SDS capped silver nanoparticles was tested using Pseudomonas aeruginosa as a model strain for gram-negative bacteria. SDS capped silver nanoparticles exhibit a much higher bactericidal activity compared to silver nanoparticles capped with other capping agents. Even at a low silver nanoparticle concentration of 5 μg/ml, complete inhibition of 107 colony forming units (CFU) was achieved with SDS capped silver nanoparticles. This concentration is much lower than the values reported by other authors. This enhanced bactericidal activity is attributed to much efficient transport of silver nanoparticles by SDS to the outer membrane of cell wall compared to the other capping agents and have a better interaction of nanoparticles with the cell.  相似文献   

12.
In this study, effect of plasma pretreatment on the absorption of carboxilated carbon nanotubes (CNTs) on the surface of cotton fabrics was investigated. Treated samples were characterised using a Raman spectrophotometer. Also, the morphological properties of samples were studied using a scanning electron microscope. Electrical resistance and interactions between CNTs and plasma-treated cotton functional groups at the surface were also evaluated. Antibacterial activity of cotton fabric when modified by low temperature plasma and stabilised with CNTs was also investigated. Results showed a uniform coating of CNTs on the plasma-treated cotton fabric and it was found that the plasma treatment is effective on improving CNTs absorption by cotton fabric. Generally, cotton fabric characterisation, such as antibacterial activity and electrical conductivity, after plasma treatment and loading CNT are improved.  相似文献   

13.
The purpose of this research work was to develop a textile finish based on the radical UV-curing of chitosan on textiles to confer antimicrobial properties. Chitosan is a biopolymer with unique properties such as biodegradability, non-toxicity, antimicrobial activity. In this work cotton or silk fabrics and synthetic filter fabrics were impregnated with an acid solution of chitosan added of the photoinitiator in the proper amount and cured at room temperature by exposure to UV lamp. Process conditions such as percentage add-on, dilution, chitosan-fabric contact time, irradiation time and power, were optimized. The antimicrobial activity of finished fabrics was tested according to ASTM E 2149-01 standard test performed with Escherichia Coli ATCC 8739. Moreover dyeing test with Turquoise Telon dye were carried out to evaluate the treatment homogeneity while the amino group content was determined by ninhydrin assay. Moreover on cotton and silk fabrics the treatment fastness to domestic laundering was tested, according to UNI EN ISO105-C01. Obtained results showed a strong antimicrobial activity conferred by the treatment, homogeneous on fabric surface. It is evident already at low add-on, without affecting the hand properties of natural fabrics and the filtration characteristics of the synthetic filter fabrics. Finally, washing fastness was better for samples prepared with a better penetration of chitosan inside the fibers.  相似文献   

14.
The one‐pot synthesis of silver nanoparticles (AgNPs) using the medium‐polar extract of Desmodium adscendens (Sw.) DC. is presented here as an alternative synthesis of metal NPs. Characterisation of the formed NPs showed polydispersed AgNPs ranging from 15 to 100 nm where the concentration of metal ions was found to play a role in the size and shape of the prepared NPs. It could be established that the flavonoids, saponins, and alkaloids present in the extract acted as both reducing and stabilising agents during the formation of the capped metal NPs. This means of NP synthesis was also employed during the in situ immobilisation of AgNPs on gauze and plaster. An evaluation of the antibacterial activity of the medium‐polar D. adscendens extract, AgNPs suspended in solution, and the immobilised AgNPs against Staphylococcus aureus (ATCC 25923), Bacillus cereus (ATCC 11778), and Escherichia coli (ATCC 25922) showed high efficacy against the latter in particular. This suggests that gauze, dilute silver nitrate solutions, and D. adscendens extract could be used successfully in the simple in situ preparation of effective antibacterial wound dressings.Inspec keywords: wounds, silver, nanoparticles, nanomedicine, biomedical materials, antibacterial activityOther keywords: size 15 nm to 100 nm, antibacterial wound dressings, in situ preparation, dilute silver nitrate solutions, alkaloids, saponins, flavonoids, metal ions, wound dressing material, antibacterial evaluation, Desmodium adscendens extract, silver nanoparticle synthesis  相似文献   

15.
We treated wool textiles with a sulfur nano-silver colloidal solution (SNSE) having Ag/S complex, which was a particle size of average 4.2 nm in ethanol base. The SNSE was a safe chemical agent having the perfect antibacterial efficacy with a very small amount of nano-sized silver and non-irritative solution to the skin. Antibacterial activity was evaluated by calculation of bacteria reduction against Gram-positive (Staphylococcus aureus) and Gram-negative (Klebsiella pneumoniae) bacteria. The treated wool textiles with the silver colloid were investigated the resistivity against insect pests through both calculation of the fiber loss weight and visible assessment attacked by larvae after 14 days in given conditions. Also, we confirmed the antistatic efficacy of the finished fabrics with silver particle on their surface. The static electricity of the treated wool fabric was increased more up to 50 ppm, then, it was decreased according to the silver content. Consequently, it was demonstrated that the finished wool fabrics with sulfur nano-silver colloid had various functionalities, such as mothproofing, antibiotic, and antistatic property.  相似文献   

16.
This research presents a generic strategy to fabricate antibacterial textile through in situ synthesis of silver nanoparticles on the fabric with smart polymeric molecules. Silk fabric and polyamide network polymer (PNP) were chosen for this study. PNP which has numerous amino groups and three-dimensional structure was applied to entrap silver ions into silk fabric. The pretreated silk fabrics were heated by steam method to make silver nanoparticles synthesized in situ on them without any other reductant and linker to provide silk fabric with antibacterial properties. The results indicated that the treated silk fabrics had excellent antibacterial activity and laundering durability. The quantitative bacterial tests showed the bacterial reduction rates of Staphylococcus aureus and Escherichia coli were able to reach above 99 % with not more than 0.05 mmol/L of AgNO3. The whiteness of silk fabric only changed from 90.47 to 86.49. The antibacterial activity of the treated silk fabric was maintained at 98.86 % reduction even after being exposed to 30 consecutive home laundering conditions. In addition, the results of scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy confirmed that silver nanoparticles had generated and dispersed well in Ag0 form on the surface of silk fibers. The understanding acquired from this work will allow one to work with the preparation of other silver nanoparticles functional textiles with excellent antibacterial activities and laundering durability through this facile, eco-friendly in situ synthesis method.  相似文献   

17.
Nanoscale silver cluster protected by sodium polyacrylate (PAA) was prepared through the reduction of aqueous silver nitrate solution containing PAA. PAA concentration was varied against a fixed concentration of silver nitrate to optimize the PAA to metal ratio, in which stable colloidal solution of silver nanoparticles of 7 ± 3 nm size could be obtained. These PAA-protected silver nanoparticles in clusters of nanoscale dimension (nanoclusters) were dispersed into the artificial heterogeneous matrix fabricated from aqueous solution of polyacrylate and protein (bovine serum albumin, BSA) by adjusting the pH in the acidic region. PAA-protected Ag-nanoparticle and Ag/PAA-BSA composites were characterized by UV-VIS spectroscopy and TEM.  相似文献   

18.
The fabrication of silver nanoparticles was accomplished by γ-ray irradiation reduction of silver nitrate in a chitosan solution. The obtained nanoparticles were stable in the solution for more than six months, and showed the characteristic surface plasmon band at 411 nm as well as a positively charged surface with 40.4 ± 2.0 mV. The silver nanoparticles presented a spherical shape with an average size of 20–25 nm, as observed by TEM. Minimum inhibitory concentration (MIC) against E. coli, S. aureus and B. cereus of the silver nanoparticles dispersed in the γ-ray irradiated chitosan solution was 5.64 µg/mL. The silver nanoparticle-loaded chitosan–starch based films were prepared by a solution casting method. The incorporation of silver nanoparticles led to a slight improvement of the tensile and oxygen gas barrier properties of the polysaccharide-based films, with diminished water vapor/moisture barrier properties. In addition, silver nanoparticle-loaded films exhibited enhanced antimicrobial activity against E. coli, S. aureus and B. cereus. The results suggest that silver nanoparticle-loaded chitosan–starch based films can be feasibly used as antimicrobial materials for food packaging and/or biomedical applications.  相似文献   

19.
In the present study we investigated the extra cellular synthesis of gold and silver nanoparticles by using the yeast Candida guilliermondii. The formation of noble metal nanoparticles was monitored by the UV-Visible spectroscopy. As prepared gold and silver nanoparticles showed distinct surface plasmon peaks at 530 nm and 425 nm respectively. Phase and morphology of the as synthesized materials were investigated by X-ray diffraction and electron microscopy techniques respectively. XRD patterns confirmed the formation of gold and silver nanoparticles with face centered cubic structures. Bio-TEM images showed the formation of near spherical, well dispersed gold and silver nanoparticles in the size range of 50-70 nm and 10-20 nm respectively. The biosynthesized nanoparticles were tested for their antimicrobial activity against five pathogenic bacterial strains. The highest efficiency for both gold and silver nanoparticles was observed against Staphylococcus aureus. A comparative study was also done to find the effect of chemically synthesized noble metal nanoparticles against the above test strains. Chemically synthesized particles had no antimicrobial activity against any of the pathogenic strains. The results obtained suggest that biosynthesized gold and silver nanoparticles can be used as effective antimicrobial agents against some of the potential harmful pathogenic microorganisms.  相似文献   

20.
Silver nanoparticles were synthesized in a paste of polyvinylpyrrolidone formed after mixing PVP with acetone and a small volume of aqueous silver nitrate under magnetic stirring. A film made with the material was characterized by UV-vis spectroscopy. The obtained spectrum shows a single peak at 438 nm, arising from the surface plasmon absorption of silver colloids. This result clearly indicates that silver nanoparticles are embedded in PVP. When the pre-treated PVP-Ag colloid is dissolved in ethylene glycol, the UV-vis spectrum of the resulting dispersion shows an absorption peak at 433 nm, whose maximum absorption blue shifts to 416 nm after 18 days of agitation. The silver nanoparticles have an average particle size of 4.12 nm. Because the IR band assigned to the carbonyl group of the PVP shifts to longer wavelengths, the interaction of this polymer with silver nanoparticles seems to take place through the carbonyl oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号