首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wearing-off phenomenon that complicates levodopa therapy of Parkinson's disease has been attributed to a reduction in striatal dopamine storage due to the progressive degeneration of presynaptic dopaminergic terminals. To determine whether postsynaptic mechanisms also contribute to these response fluctuations, the duration of the antiparkinsonian response in parkinsonian patients grouped by disease severity was compared following discontinuation of a steady-state optimal-dose infusion of apomorphine. Although the plasma half-life of this dopamine receptor agonist remained constant, its mean efficacy half-time declined from 66 minutes in early, levodopa-naive patients to 33 minutes in advanced, complicated parkinsonians (p < 0.005). Since the motor effects of apomorphine do not depend on the presence of dopaminergic terminals, changes at the postsynaptic level undoubtedly contribute to the diminished response duration. The only slightly greater attenuation of levodopa's motor effects observed previously under similar conditions suggests these postjunctional alterations, possibly involving relatively plastic striatal dopaminoceptive systems, account for most of the shortening in the duration of levodopa action that underlie wearing-off fluctuations.  相似文献   

2.
Chronic administration of haloperidol induced supersensitivity of the pre- and postsynaptic dopaminergic receptors in rat brain. The response of the presynaptic receptors was determined by an enhanced inhibitory effect of apomorphine on dopamine synthesis after gamma-butyrolactone injection. This change in the receptor function was detected both in the nigrostriatal and mesolimbic pathways. Haloperidol also increased the 3H-spiperone binding sites in striatal membranes, indicating supersensitivity of the postsynaptic receptors. Subsequent prolonged treatment with high doses of L-DOPA/carbidopa resulted in a decrease in 3H-spiperone binding sites, but had no effect on the supersensitive presynaptic receptors. It is suggested that tardive dyskinesia may be a state of both pre- and postsynaptic dopamine receptor supersensitivity and that chronic L-DOPA treatment may have a differential effect on these sites.  相似文献   

3.
The significance of guanine nucleotides and nucleosides in neurodegenerative disorders is suggested by recent reports that these molecules enhance neurite branching and astrocyte proliferation. The objective of this study was to investigate the influence of increased dopamine metabolism, produced by 5-day treatment of rabbits with reserpine (2 mg/kg) or levodopa (LD) (50 mg/kg), on striatal concentrations of guanosine, guanine, and their metabolites. Reserpine treatment decreased striatal guanosine by 41% and increased guanine by 50%, while LD decreased guanosine by 48% (all p < 0.01 vs. vehicle-treated controls). LD also increased guanine by 22% (not statistically significant). Xanthine and uric acid concentrations were unchanged. Because of the neurotrophic properties of guanosine and guanine, changes in striatal concentrations of these purines secondary to increased dopamine (DA) turnover may have relevance for survival of remaining dopaminergic neurons in Parkinson's disease (PD).  相似文献   

4.
Clinical and neuropharmacological evidence indicates the involvement of dopaminergic mechanisms in Parkinson's disease and schizophrenia, as well as in iatrogenic Parkinsonism and drug-induced schizophrenia-like syndrome. The evidence hitherto presented stresses the existence of a reversed relationship between Parkinson's disease and schizophrenia and implicates the possibility that dysfunction of dopamine-receptors may be a central phenomenon in both diseases. In view of the recent demonstration of two separate dopamine-receptors, it is postulated that a striatal receptor blockade may cause Parkinson's disease, whereas a limbic receptor blockade may result in schizophrenia. The recent discovery that several autoimmune diseases, such as myasthenia gravis, are the result of an immunopharmacological block at receptor sites, together with several observations of immunological disorders in Parkinson's disease and schizophrenia, suggests the possibility that certain types of Parkinson's disease and schizophrenia might be the consequence of an autoimmune blockade of striatal or limbic dopamine-receptors, respectively.  相似文献   

5.
Putative modulatory effects of L-3,4-dihydroxyphenylalanine (L-DOPA) on D2 dopamine receptor function in the striatum of anaesthetised rats were investigated using both in vivo microdialysis and positron emission tomography (PET) with carbon-11 labelled raclopride as a selective D2 receptor ligand. A single dose of L-DOPA (20 or 100mg/kg i.p.) resulted in an increase in [11C]raclopride binding potential which was also observed in the presence of the central aromatic decarboxylase inhibitor NSD 1015, confirming that the effect was independent of dopamine. This L-DOPA evoked D2 receptor sensitisation was abolished by a prior, long-term administration of L-DOPA in drinking water (5 weeks, 170mg/kg/day). In the course of acute L-DOPA treatment (20mg/kg), extracellular GABA levels were reduced by approximately 20% in the globus pallidus. It is likely that L-DOPA sensitising effect on striatal D2 receptors, as confirmed by PET, may implicate striato-pallidal neurones, hence a reduced GABA-ergic output in the projection area. Since the L-DOPA evoked striatal D2 receptor supersensitivity habituates during long-term treatment, the effects reported here may contribute to the fluctuations observed during chronic L-DOPA therapy in Parkinson's disease.  相似文献   

6.
The role of the dopamine D3 receptor subtype in the central nervous system is still not well understood. It has a distinct and restricted distribution, mostly associated with limbic territories of the striatum (olfactory tubercle and the shell of nucleus accumbens) in rat brain. Dopaminergic denervation induced by a 6-hydroxydopamine lesion of the nigrostriatal system in rat down-regulates the expression of the D3 receptor. In the present study, we investigated the functional neuroanatomy of the dopamine D3 receptor subtype in the monkey (Macaca fascicularis) basal ganglia. We also studied the effect of administration of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and chronic D1-like (SKF 82958) or D2-like (cabergoline) agonist treatments on dopamine D3 receptor levels using receptor autoradiography. Our results clearly show that the distribution of D3 receptors in the monkey is more closely related to associative and limbic components of the striatum (caudate-putamen), as compared with its sensorimotor counterpart. Hence, D3 receptors may be more specifically involved in cognitive and motivational aspects of striatal functions, which are elaborated in prefrontal, temporal, parietal, cingulate and limbic cortices. Moreover, MPTP administration significantly decreased levels of D3 receptors and this effect was reversed or compensated by a chronic treatment with a D1-like, but not a D2-like, receptor agonist. The D3 receptor may represent an important target for adjunct or direct therapy designed to improve cognitive deficits observed in patients with Parkinson's disease, schizophrenia and other illnesses with frontal lobe cognitive disturbances.  相似文献   

7.
Recent evidence suggests that behavioral supersensitivity to dopamine (DA) agonists observed in chronic neuroleptic-treated animals might be related to changes in synaptic morphology and density. The aim of this study was to test this hypothesis using Western blotting to determine the striatal synaptophysin levels in rats chronically treated with haloperidol followed by sub-acute administration of a DA agonist. Chronic haloperidol treatment (1 mg/kg/day for 21 days) produced an 88% increase in striatal synaptophysin levels and a 73% increase in apomorphine-induced stereotypes. Sub-acute administration of the DA D-1 receptor agonist SKF38393 (10 mg/kg/day for 5 days) or the DA D-2 receptor agonist quinpirole (1 mg/kg/day for 5 days) did not modify the haloperidol-induced increase in striatal synaptophysin levels. However, sub-acute administration of SKF38393 attenuated (62%) haloperidol-induced stereotypies. We conclude that there is no direct relationship between stereotyped behavior and synaptophysin levels indicating that striatal synaptophysin levels are not a good marker of dopaminergic supersensitivity.  相似文献   

8.
Parkinson's disease (PD) is characterized by decreased striatal dopamine, but serotonin (5-HT) is also reduced. Because 5-HT decreases following a single levodopa injection, levodopa has been suggested to contribute to PD's serotonergic deficits. However, in a recent study, rat striatal serotonin levels were reported to increase following 15-day levodopa administration. To address this issue, we administered levodopa (50 mg/kg) to rabbits for 5 days, then measured serotonin, its precursors tryptophan and 5-hydroxytryptophan (5-HTP), and its major metabolite 5-hydroxyindole-acetic acid (5-HIAA) in striatum and CSF. Striatal serotonin and tryptophan were unchanged, while 5-HTP and 5-HIAA increased 4- and 7-fold, respectively. CSF 5-HTP and 5-HIAA were also significantly increased. In levodopa-treated animals, 5-HTP concentrations were moderately correlated (r = 0.679) between striatum and CSF, while weak correlations were present between striatal and CSF concentrations of both serotonin and 5-HIAA. These results suggest that repeated levodopa treatment increases striatal serotonin turnover without changing serotonin content. However, levodopa-induced alterations in striatal serotonin metabolism may not be accurately reflected by measurement of serotonin and 5-HIAA in CSF.  相似文献   

9.
The recent advances in the treatment of Parkinson's disease have made for significant improvements in the quality of life and mortality rate of those who suffer from this neurodegenerative disease. At the same time, the number of options and the complexity of multi-drug regimens have posed a great challenge for the clinician caring for the patient with Parkinson's disease. Though there are still many questions to be answered in regard to the potential neuroprotective effects of several medications, a few general rational treatment plans can be outlined. In patients requiring treatment in the early stages of the disease, especially with a predominance of tremor, anticholinergics or amantadine should be considered initially. At this point, it would be reasonable to add selegiline for both therapeutic and possible neuroprotective effects. As a patient becomes more affected by the disease and additional therapy is necessary, starting either a dopamine agonist or levodopa would be a rational choice. Continuation of selegiline and, possibly, amantadine for neuroprotective reasons should be contemplated. Titration in levodopa therapy (with controlled-release or standard levodopa) to higher levels should prompt addition of a dopamine receptor agonist if one has not been started previously. Conversely, if a patient is receiving only a dopamine receptor agonist and is becoming progressively disabled, levodopa should be added to the regimen. Fluctuations in motor abilities may be improved further by the use of a COMT inhibitor. Patients with uncontrollable motor fluctuations should be considered for surgery. Undoubtedly, the coming years will bring more treatment options and more evidence on which sequences and combinations of therapies are the most beneficial. Differences in efficacy and adverse effects for each patient must be taken into consideration when outlining and carrying out a treatment plan. By using a rational approach to the treatment of Parkinson's disease, with the above guidelines in mind, the patient should be able to enjoy a good quality of life and level of function for many years.  相似文献   

10.
Multiple system atrophy (MSA) describes a relatively uncommon, debilitating disorder that is frequently misdiagnosed as Parkinson's disease. Patients with MSA show various combinations of parkinsonism, cerebellar ataxia, pyramidal signs and progressive autonomic failure, especially cardiovascular and urologic autonomic dysfunction. Few treatment options exist. Although some patients initially respond well to dopaminergic treatment for their parkinsonian symptoms, striatal degeneration occurs, and levodopa often becomes ineffective. Thus, physicians may provide only symptomatic treatment and support for patients with MSA. In this paper, we present a case study of a 68-year-old woman who came to the Vanderbilt Movement Disorders Clinic with severe autonomic dysfunction and parkinsonism, previously diagnosed as Parkinson's disease. Following autonomic function tests as well as clinical evaluation, she was diagnosed with MSA and began treatment for orthostatic hypotension and micturition dysfunction.  相似文献   

11.
BACKGROUND: In dementia with Lewy bodies (DLB) mild extrapyramidal symptoms are associated with moderate reductions in substantia nigra neuron density and concentration of striatal dopamine. Many DLB patients treated with typical neuroleptics suffer severe adverse reactions, which result in decreased survival. METHODS: In a series of DLB cases, with and without neuroleptic sensitivity, substantia nigra neuron densities, striatal dopamine and homovanillic acid concentrations, and autoradiographic [3H]mazindol and [3H]raclopride binding (to the dopamine transporter and D2 receptor, respectively) were analyzed and compared to control and idiopathic Parkinson's disease cases. RESULTS: D2 receptors were up-regulated in neuroleptictolerant DLB and Parkinson's disease compared to DLB without neuroleptic exposure and controls. D2 receptors were not up-regulated in DLB cases with severe neuroleptic reactions. Dopamine uptake sites were reduced concomitantly with substantia nigra neuron density in Parkinson's disease compared to controls, but there was no significant correlation between substantia nigra neuron density and [3H]mazindol binding in DLB groups. There was no significant difference in substantia nigra neuron density, [3H]mazindol binding, and dopamine or homovanillic acid concentration between neuroleptic-tolerant and -sensitive groups. CONCLUSIONS: Failure to up-regulate D2 receptors in response to neuroleptic blockade or reduced dopaminergic innervation may be the critical factor responsible for neuroleptic sensitivity.  相似文献   

12.
Dyskinesias are usually seen in Parkinson's disease (PD) patients after several years of L-dopa therapy. Their presence has been attributed to supersensitivity of striatal D1 and D2 receptors. We have used PET to assess striatal D2 receptor binding in untreated PD patients and striatal D1 and D2 binding in L-dopa-treated PD patients. Untreated patients showed a 14% increase in mean D2 receptor binding in the putamen contralateral to the more affected limbs (p < 0.02). Treated patients were segregated into subgroups according to the presence or absence of dyskinesias. There were no differences in mean caudate and putamen D1 and D2 binding between dyskinetic and nondyskinetic patients, matched for duration of clinical disease. Both dyskinetic and nondyskinetic PD subgroups showed a similar 16% reduction of mean caudate D2 binding (p < 0.01) with normal D2 binding in putamen. Mean caudate and putamen D1 binding potentials of both subgroups were reduced by 10% compared with those of controls, though this trend did not reach significance. Putamen D1 binding, however, showed a negative correlation with duration and L-dopa treatment (p < 0.03). These findings suggest that, while exposure of PD patients to L-dopa may be associated with reductions in caudate D2 and caudate and putamen D1 receptor, dyskinesias are unlikely to result from alterations in striatal dopamine receptor binding.  相似文献   

13.
Metabotropic glutamate receptors are a major class of excitatory amino acid receptors. Eight metabotropic glutamate receptors subtypes have been cloned and have been classified into three groups based on their amino acid sequence homology, effector systems, and pharmacological profile. Previous results have shown that striatal group I metabotropic glutamate receptor stimulation produces vigorous contralateral rotation in intact rats, thought to be due to increased striatal dopamine release. Examination of FOS-like immunoreactivity and local cerebral glucose metabolism suggests that this occurs secondary to activation of the subthalamic nucleus. We sought to determine the contribution of dopamine by examining metabotropic glutamate receptor agonist-induced rotation in rats following acute dopamine depletion by reserpine/alpha-methyl-para-tyrosine treatment, or chronic dopamine depletion by 6-hydroxydopamine treatment. In unilateral 6-hydroxydopamine lesioned rats, the group I metabotropic glutamate receptor agonist (RS)-3,5-dihydroxyphenylglycine induced contralateral rotation with a coincident increase in striatal 3,4-dihydroxyphenylacetic acid. The rotation was attenuated by the group I antagonist 1-aminoindan-1,5-dicarboxylate. Examination of FOS-like immunoreactivity and [14C]2-deoxyglucose uptake in chronically dopamine depleted rats also revealed similar patterns to those seen previously in intact rats. However, acutely dopamine depleted rats do not exhibit metabotropic glutamate receptor agonist-induced rotation and show a different pattern of [14C]2-deoxyglucose uptake, with no increase in glucose utilization in the intermediate and deep layers of the superior colliculus. These results suggest that there are compensatory changes under conditions of chronic dopamine denervation which permit metabotropic glutamate receptor agonist-induced rotation to occur, which may include dopamine receptor supersensitivity, increased dopamine turnover, and/or changes in sensitivity of striatal group I metabotropic glutamate receptors. The group III metabotropic glutamate receptor agonist L-(+)-2-amino-4-phosphonobutyrate induced contralateral rotation in 6-hydroxydopamine lesioned rats, while it had no effect in intact rats. Additionally, examination of FOS-like immunoreactivity revealed a distinct pattern following L-(+)-2-amino-4-phosphonobutyrate administration in 6-hydroxydopamine lesioned versus intact rats. These results suggest that there is a change in the effect of striatal group III stimulation under conditions of dopamine depletion.  相似文献   

14.
6-Hydroxydopamine-induced nerve terminal lesion of the nigrostriatal system may provide a partial lesion model of Parkinson's disease useful for the assessment of neuroprotective treatments and behavioral recovery after therapeutic intervention. The aim of the present study was to assess the retrograde degenerative changes in the dopaminergic neurons of the substantia nigra and the associated behavioral and neurochemical consequences of intrastriatal injections of 6-hydroxydopamine in young adult rats. Four groups of rats were stereotaxically injected in the right striatum with graded doses of 6-hydroxydopamine ranging from 0 to 20 mu g. Structural and functional deficits were quantified by tyrosine hydroxylase-immunoreactive nigral cell numbers, striatal dopamine content, skilled paw use, and drug-induced rotation. The results show that striatal 6-hydroxydopamine lesions produce dose-dependent decreases in striatal dopamine levels and tyrosine hydroxylase-immunoreactive cell numbers in the ipsilateral substantia nigra, accompanied by a significant long-lasting atrophy of the remaining dopaminergic neurons. Paw reaching test scores on the side contralateral to the lesion were non-linearly correlated with dopaminergic neuronal cell loss and exhibited a clear symptomatic threshold such that impaired paw use appeared only after >50% loss of nigral dopamine neurons or a reduction of 60-80% of striatal dopamine levels. The behavioral, cellular, and neurochemical effects of the nerve terminal lesion thus bear some resemblance to the early stages of Parkinson's disease, where the severity of motor impairment is correlated with the loss of dopamine in the striatum and dopaminergic neuronal loss in the substantia nigra. Rats with intrastriatal 6-hydroxydopamine lesions thus provide a model of progressive dopamine neuron degeneration useful not only for the exploration of neuroprotective therapeutic intervention but also for the study of mechanisms of functional and structural recovery after subtotal damage of the nigrostriatal dopamine system.  相似文献   

15.
A neural network model of movement control in normal and Parkinson's disease (PD) conditions is proposed to simulate the time-varying dose-response relationship underlying the effects of levodopa on movement amplitude and movement duration in PD patients. Short and long-term dynamics of cell activations and neurotransmitter mechanisms underlying the differential expression of neuropeptide messenger RNA within the basal ganglia striatum are modeled to provide a mechanistic account for the effects of levodopa medication on motor performance (e.g. the pharmacodynamics). Experimental and neural network simulation data suggest that levodopa therapy in Parkinson's disease has differential effects on cell activities, striatal neuropeptides, and motor behavior. In particular, it is shown how dopamine depletion in the striatum may modulate differentially the level of substance P and enkephalin messenger RNA in the direct and indirect basal ganglia pathways. This dissociation in the magnitude and timing of peptide expression causes an imbalance in the opponently organized basal ganglia pathways which results in Parkinsonian motor deficits. The model is validated with experimental data obtained from handwriting movements performed by PD subjects before and after medication intake. The results suggest that fine motor control analysis and network modeling of the effects of dopamine in motor control are useful tools in drug development and in the optimization of pharmacological therapy in PD patients.  相似文献   

16.
17.
Regional cerebral perfusion was evaluated by SPECT with technetium 99m hexamethylpropyleneamine oxime (99mTc HMPAO) as a tracer in 21 patients presenting with Parkinson's disease and in 11 normal controls. In the parkinsonian patients, scans were performed both off treatment, and after levodopa, and clinical dopaminergic responsiveness was evaluated. Uptake of HMPAO by the basal ganglia was significantly decreased in the parkinsonian subjects, compared with normal controls. This reduction was seen in both responders (n = 14) and non-responders (n = 7) to dopaminergic treatment. Uptake of HMPAO by the basal ganglia rose after treatment with levodopa, but the change was similar in both responders and non-responders. By contrast a striking difference in cortical HMPAO uptake was found between responders and non-responders, with significantly lower uptake in the medial temporal and posterior parietal cortex in the non-responders. This reduction was symmetrical. Basal ganglia perfusion assessed by this technique is unlikely to be of use in the diagnosis of Parkinson's disease that is responsive to dopaminergic treatment. The presence of extensive cortical involvement on a baseline scan correlates with a lack of dopaminergic responsiveness, however, and this may be useful diagnostically.  相似文献   

18.
Quite a substantial number of human disorders have been associated with a primary or a secondary impairment of one or several of the dopaminergic pathways. Among disorders associated with a primary impairment of dopaminergic transmission are Parkinson's disease, striatonigral degeneration, progressive supranuclear palsy, and possibly schizophrenia. Diseases of secondary dopamine dysfunction are chiefly represented by Huntington's disease in which dopaminergic transmission is being interrupted by progressive loss of the striatal neurons bearing the postsynaptic D1- and D2-dopamine receptors. Central dopaminergic systems have anatomical as well as organizational properties that render them unique by comparison to other neurotransmission systems, making them able to play a pivotal role in the modulation of various important brain functions such as locomotor activity, attention, and some cognitive abilities. These properties of dopamine neurons have obviously several implications in the clinical expression of human disorders involving dopamine neuron dysfunction. In addition, they can greatly influence the clinical/behavioral consequences of experimental lesions in animal models of dopamine dysfunctions.  相似文献   

19.
The pathophysiology of dystonia is unclear, but several clues implicate striatal dopamine dysfunction. In contrast, the causal relationship between striatal dopamine deficiency and parkinsonism is well defined. We now suggest that parkinsonism or dystonia may occur following striatal dopamine deficiency. Baboons treated with intracarotid 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) developed transient hemidystonia prior to hemiparkinsonism. The day after MPTP treatment, most animals had spontaneous ipsilateral turning. Within a few days, all developed contralateral hemidystonia, with the arm and leg extended and externally rotated. This transient dystonia preceded hemiparkinsonism with flexed posture, bradykinesia, and postural tremor that persisted for up to 1.5 years. Dystonia corresponded temporally with a decreased striatal dopamine content and a transient decrease in D2-like receptor number. The time course of dystonia and parkinsonism is analogous to lower limb dystonia as the first, frequently transient, symptom of Parkinson's disease in humans. The association of striatal dopamine deficiency with dystonia and parkinsonism implies that other factors influence clinical manifestations.  相似文献   

20.
The purpose of this study was to assess the in vivo effects of melatonin, as an antioxidant, on striatal dopaminergic function in rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion of the striatum. Compared with sham-operated controls and expressed as a ratio relative to the contralateral side, there was an increase in the lipid peroxidation product malondialdehyde (MDA, 142%) and a significant reduction in tyrosine hydroxylase (TH) enzyme activity (28%) and dopamine (DA, 32%) and its metabolite dihydroxyphenylacetic acid (DOPAC, 50%) 2 weeks after 6-OHDA injection. Melatonin treatment almost completely restored MDA levels to normal, suggesting the in vivo action of melatonin as an antioxidant. In parallel, partial, but statistically significant recovery of striatal dopaminergic function, including TH enzyme activity and DA levels, also occurred following melatonin treatment. Taken together with our previous reports showing behavioral and histochemical effects of melatonin on the nigrostriatal dopaminergic system, the present results strongly support the hypothesis that melatonin, as an antioxidant, may have beneficial effects on therapeutic approaches for the treatment of oxidative stress-induced neurodegenerative disease such as Parkinson's disease (PD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号