首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fire development inside a train car is a topic that has not been studied extensively due to the complexity of the problem and the need for a real train car and the appropriate facilities to conduct these tests in a controlled environment. This paper presents detailed experimental data on fire development inside a real intercity train car. The facility used for the tests is capable of conducting such large-scale fires and measuring the heat release rate using oxygen consumption calorimetry. Thermocouples and plate thermometers were installed inside the train car to provide an insight of the fire development. A number of cameras were also placed inside the car and in the tunnel providing live videos during the test. The peak heat release rate was 32 MW at 1081 s after ignition, and the fire burned 83% of the initial fire load. Flame spread data and recordings of window breaking events are discussed and compared to the heat release rate data. A local flashover-type phenomenon where the fire involved all combustibles at the rear of the car was found to occur.  相似文献   

2.
旅客列车车厢内发生火灾时,火灾烟气的运动状况直接影响旅客的人身安全,往往造成重大的人员伤亡和巨大的财产损失。采用模型实验、数值模拟的方法对运行的旅客列车经过隧道发生火灾时车厢内烟气层高度的特征进行了研究,将旅客列车卧铺车厢处理为多个受限空间的组合,研究了车厢内烟气层高度在开口不同状况下的变化规律。模型实验与数值模拟相结合为列车车厢火灾研究提供了理论分析模型和实验研究方法,研究成果为车厢防火设计提供了重要的技术依据。  相似文献   

3.
It has occasionally been observed that fires in tunnels appear to be significantly more severe than fires in the open air. A literature review has been carried out, comparing heat release data from fires in tunnels with heat release data from similar fires in the open air. A Bayesian methodology has been used to investigate the geometrical factors that have the greatest influence on heat release rate. It is shown that the heat release rate of a fire in a tunnel is influenced primarily by the width of a tunnel; a fire will tend to have a higher heat release rate in a narrow tunnel rather than in a wide tunnel. The observed relationship between heat release rate and tunnel width is presented. Results from a study investigating the variation of heat release rate with ventilation velocity for fires in tunnels are also presented. A method for making realistic estimates of the heat release rates of fires in tunnels, based on these results, is presented.  相似文献   

4.
Externally venting flames (EVF) may emerge through openings in fully developed under-ventilated compartment fires, significantly increasing the risk of fire spreading to higher floors or adjacent buildings. Several fire engineering correlations have been developed, aiming to describe the main characteristics of EVF that affect the fire safety design aspects of a building, such as EVF geometry, EVF centreline temperature and EVF-induced heat flux to the façade elements. This work is motivated by recent literature reports suggesting that existing correlations, proposed in fire safety design guidelines (e.g. Eurocodes), cannot describe with sufficient accuracy the characteristics of EVF under realistic fire conditions. In this context, a wide range of EVF correlations are comparatively assessed and evaluated. Quantification of their predictive capabilities is achieved by means of comparison with measurements obtained in 30 different large-scale compartment-façade fire experiments, covering a broad range of heat release rates (2.8 MW to 10.3 MW), ventilation factor values (2.6 m5/2 to 11.53 m5/2) and ventilation conditions (no forced draught, forced draught). A detailed analysis of the obtained results and the respective errors corroborates the fact that many correlations significantly under-predict critical physical parameters, thus resulting in reduced (non-conservative) fire safety levels. The effect of commonly used assumptions (e.g. EVF envelope shape or model parameters for convective and radiative heat transfer calculations) on the accuracy of the predicted values is determined, aiming to highlight the potential to improve the fire engineering design correlations currently available.  相似文献   

5.
An important indicator of fire hazard in residential fires is the occurrence of flashover in the room of fire origin. Since the variability of residential fire scenarios is large, many different cases must be considered to evaluate the hazard of a given flammable product. Efficiently predicting the occurrence of flashover of a naturally ventilated compartment is possible using the correlation of McCaffrey, Quintiere, and Harkleroad (MQH). The large variability in United States (U.S.) living room fire scenarios is characterized from available data and propagated through the MQH correlation using Monte Carlo (MC) simulation. For the parameters, for which no relevant data was found, uniform probability distributions were assumed. The scenarios sampled in the MC simulations generally fell within the range of scenarios for which the MQH correlation has been validated. Flashover probabilities were estimated for fires up to 5 MW in heat release rate (HRR) and up to 8 min in duration. It was found that fires with HRRs less than 400 kW have a flashover probability of less than 0.01% regardless of their duration. Typical furniture fires were used as example cases, and it was predicted that a three seat upholstered sofa with a peak HRR of 2.15 MW has a 90% chance of flashing over a randomly chosen U.S. living room. The results of a global sensitivity analysis indicates that the fire location parameter and the vent opening width are the most important parameters affecting the prediction of the occurrence of flashover in U.S. living rooms. The methodology presented is generalizable, and the results can be readily improved by the collection of more data and the use of higher fidelity fire models.  相似文献   

6.
为了确定长大铁路隧道紧急出口设置的最大间距,采用对列车运行时火灾车厢中人员疏散进行了现场试验和仿真计算,并对车厢内混合人群疏散和火灾烟流扩散进行数值模拟的方法得到火灾车厢内的人员必需安全疏散时间和可用安全疏散时间,从而确定了列车发生火灾后最大运行时间为275 s。根据火灾列车运行时速为80 km/h,火灾列车可运行6 km,即长大铁路隧道紧急出口设置间距最大为6 km。  相似文献   

7.
A series of large-scale fire tests for road tunnel application was conducted in a test tunnel facility in Spain. The aim of this fire tests program was to investigate the magnitude of the heat release rate generated by a fire in heavy goods vehicles (HGV’s) with and without a fire suppression system in tunnels in Singapore; the possibility of interchanging a fire suppression system with other measures such as lowering the longitudinal flow velocity; and to acquire information on the appropriate design parameters (e.g., nozzle type, discharge density and activation time) to adopt based on the most probable fuel load used in these road tunnels. In order to ensure repeatability, simulated HGV’s consisting of 228 pallets with 48 plastic pallets (20%) and 180 wooden pallets (80%) were used in all fire tests. An air velocity of approximately 3 m/s was applied. As the scope of work covered in this fire test program is very large, only the setup of the fire test and the findings on the effects of heat release rate with (Test 4) and without (Test 7) a fixed water based fire-fighting system are covered. The test results indicate that a substantial reduction of fire heat release rate can be obtained using a low-pressure deluge fire suppression system, as long as timely activation of the water is provided. However, the influence of the suppression system on CO production is significant. Such experimental data address the current dearth of knowledge on the actual effect of low-pressure deluge systems on the heat release rate from HGVs in tunnel fires.  相似文献   

8.
The simulation of large complex dynamical systems such as a fire in road tunnels is necessary but costly. Therefore, there is a crucial need to design efficient models. Coupling of computational fluid dynamics (CFD) models and 1D network modeling simulations of a fire event, a multiscale method, can be a useful tool to increase the computational efficiency while the accuracy of simulations is maintained. The boundary between a CFD model (near field) and a 1D model (far field) plays a key role in the accuracy of simulations of large systems. The research presented in this paper develops a novel methodology to select the interface boundary between the 3D CFD model and a 1D model in the multiscale simulation of vehicle fire events in a tunnel. The development of the methodology is based on the physics of the fluid structure, turbulent kinetic energy of the dynamical system, and the vortex dynamics. The methodology was applied to a tunnel with 73.73 m2 cross section and 960 m in length. Three different vehicle fire scenarios were investigated based on two different heat reslease rates (10 MW and 30 MW) and two different inlet velocities (1.5 m/s and 5 m/s). all parameters upstream and downstream of the fire source in all scenarios were investigated at t?=?900 s. The effect of changes in heat release rate (HRR) and air velocity on the selection of an interface boundary was investigated. The ratio between maximum longitudinal and transversal velocities was within a range of 10 to 20 in the quasi-1D region downstream of the fire source. The selected downstream interface boundary was 12Dh m downstream of the fire for the simulations. The upstream interface boundary was selected at 0.5 Dh m upstream the tip of the object when the velocity was greater than equal to the Vc. In the simulations with backlayering (V?<?Vc), the interface boundary was selected 10 m further from the tip of the backlayering (1.2 Dh). An indirect coupling strategy was utilized to couple CFD models to 1D models at the selected interface boundary; then, the coupled models results were compared to the full CFD model results. The calculated error between CFD and coupled models for mean temperature and velocity at different cross sections were calculated at less than 5%. The findings were used to recommend a modification to the selection of interface boundary in multiscale fire simulations in the road tunnels and more complex geometries such as mines.  相似文献   

9.
This paper presents the main results of six large scale fixed fire fighting system tests that were carried out in the Runehamar tunnel in September 2013. It describes the background and the performance of the system. The main fire load consisted of 420 standardized wood pallets and a target consisting of a pile of 21 wood pallets placed 5 m from the rear end of the main fire load. The purpose was to investigate possible fire spread. The water spray system is a deluge zone system delivering 10 mm/min in the activated zone. The detection system was simulated with use of thermocouple in the tunnel ceiling. The alarm was registered when the ceiling gas temperature was 141°C. After alarm was obtained the system was activated manually after a given delay time that was varied in the tests. The heat release rates in tests with fire suppression were reduced to 20–45 MW compared to 100 MW estimated for a free-burn test or 75 MW in test 6 with a failure of activation. Fire spread to the target was prevented after fire suppression.  相似文献   

10.
In case of fire, constructive features of typical atria could favor the spread of smoke. This makes the design of their smoke control and management systems a challenging task. Five full-scale fire experiments in the literature have been analyzed and numerically compared in FDS v6 to explore the influence of the make-up air. However, these fire experiments cover only a limited number of set-ups and conditions, and require further numerical modeling to obtain a deeper understanding of the makeup air influence. Subsequently, 84 simulations with FDS v6 have been carried out, considering different vent areas (air velocity from 0.4 to 5.3 m/s) and configurations, two heat release rates (2.5 and 5 MW), and two pan locations. It is demonstrated that make-up air velocities lower than the prescribed limit of 1 m/s, by the international codes, may induce adverse conditions. Based on our results, we recommended fire engineers to numerically assess the fire scenario with even lower velocity values. The results also show that asymmetric configurations are prone to induce circulation around the flame which can contribute to the formation of longer flames and fire whirls. Thus, this numerical study links two fire types allowing the connection of pool fires to fire whirls, which completely differ in behaviour and smoke filling, for the sake of design of fire safety.  相似文献   

11.
Small longitudinal velocity cannot prevent backlayering in tunnel fire, while excessive longitudinal velocity will destroy stratification of smoke layer and lead to bifurcation flow. As smoke bifurcation flow proceeds, the longitudinal flow is divided into two streams and flow along both sidewalls of the tunnel ceiling. The critical velocity of bifurcation flow is the minimum value at which bifurcation flow starts to occur. To investigate the critical velocity of bifurcation flow, experiments and CFD simulations were conducted. Experiment was carried out in a reduced-scale tunnel, which is 8 m long, 1 m wide and 0.5 m high. The numerical research was performed using FDS. In simulation, the computational region of a tunnel is 200 m long, 10 m wide. The heat release rate (1 MW to 6 MW) and the height (4 m to 8 m) is changed in the 30 simulation scenarios. Theoretical analysis showed that the dimensionless critical velocity of bifurcation flow only depends on the dimensionless heat release rates, and a mathematical equation is proposed. The reduced-scale experiments indicated that the critical velocity of bifurcation flow is 1.48 times that of critical velocity for preventing backlayering, and the coefficient is in agreement with CFD simulation.  相似文献   

12.
In England, there are no fixed requirements on the parameters adopted when considering residential design fires, and analyses undertaken are often deterministic with limited consideration given to probabilistic assessments and the sensitivity of parameters. The Home Office dwelling fires dataset has been analysed, considering the fire damage area and the time from ignition to fire and rescue service arrival. From this, lognormal distributions for the maximum heat release rate (HRR) and fire growth rate of residential fires have been approximated. The mean maximum HRR ranges from 900 kW to 1900 kW, with a standard deviation ranging from 2000 kW to 3700 kW, depending on property type and room of fire origin. The mean growth rate, assuming a t2 relationship, ranges from 0.0022 kW/s2 to 0.0034 kW/s2, with a standard deviation ranging from 0.0071 kW/s2 to 0.0132 kW/s2. When considering incidents which result in immediate fire and rescue service call out following ignition, the mean growth rate increases to a range of 0.0058 kW/s2 to 0.0088 kW/s2. As a result of the analyses, design fire distributions are provided which can be adopted for probabilistic assessments. For deterministic analyses, it is proposed that an approximate 95th percentile fire may be adopted, aligning with a medium growth rate of 0.0117 kW/s2 and a maximum fuel-limited HRR in the region of 3800 kW to 4400 kW, depending on whether the dwelling is a house or an apartment. A 95th percentile design fire broadly aligns with values already specified in guidance, helping to substantiate the existing recommendations.  相似文献   

13.
隧道火灾往往会造成严重的人员伤亡和巨大的社会影响及经济损失,是威胁隧道运营安全的主要灾害之一。本文指出了隧道火灾的诱因、频率及其特点,介绍了隧道火灾的主要研究方法及研究内容,并重点介绍了隧道火灾的两个主要影响因素——火源释热率和临界风速,最后提出了今后有待研究的内容。  相似文献   

14.
Wind turbines are generally considered cost-effective, reliable and sustainable energy sources. Fires are not common in wind turbines, but a significant number of fires occur every year due to the large number of turbines installed. Wind turbine fires are difficult to extinguish hence significant damage is expected. Due to the unmanned operation, the probability of a turbine being occupied during a fire is very low. However, operators can do several tasks every week, and hence be exposed to a certain risk. Moreover, there is a general lack of information about how a fire develops inside a wind turbine and the subsequent evolution of the tenability conditions during the time required for an eventual evacuation. Gamesa has been working on fire safety since 2013, using CFD fire modelling to provide insights on wind turbine fire development for the design of emergency procedures. The paper describes a fire hazard analysis performed in a Gamesa’s 2.5 MW turbine. A CFD simulation is carried out to estimate the effects during the first minutes of a typical wind turbine fire in an electrical cabinet. Results show that average oxygen concentration at the nacelle remains above 19.5% during the first 10 min; temperature remains below 60°C for 12 min if measured at 1.5 m; and visibility is on average assured at heights lower than 1.5 m, with values above 5 m during the first 8 min in worse locations, implying no danger for personnel. The potential of this type of analysis to design safer wind turbines under performance-based approaches is clearly demonstrated.  相似文献   

15.
考虑地铁车窗受高温破碎的因素,利用FDS研究不同车门开闭状态下车厢火灾发展,对比热释放速率、温度、车窗破碎时间等.结果显示:车门开启数量对车厢火灾热释放速率的影响较大,最大热释放速率可达14.4 MW.在400℃和600℃的破碎温度下,当车门开启数量大于3扇和4扇时,车厢火灾最大热释放速率下降.火灾发展初期,车门开启数...  相似文献   

16.
There has been prior research exploring the exposure of common electrical cords and cables to fire, but that has traditionally been at the lab scale and under near steady-state exposures. The goal of these experiments was to expose six types of cords and cables in a room-scale compartment with a fuel load sufficient to drive the compartment through flashover. The basic test design was to expose the cords and cables on the floor of a compartment to a growing fire to determine the conditions under which the cord/cable would trip the circuit protection device. All of the cords were energized and installed on a non-combustible surface. The six cables and cords were protected by three different circuit protection devices which were remote from the thermal exposure. This configuration resulted in 18 exposures per experiment. The room fires experiments consisted of three replicate fires with two sofas as the main fuel source, two replicate fires with one sofa as the main fuel source and one fire with two sofas and vinyl-covered MDF paneling on three walls in the room. Each fuel package was sufficient to support flashover conditions in the room. The average peak heat release rate of the sofa fueled compartment fires with gypsum board ceiling and walls prior to suppression was 6.8 MW. The addition of vinyl covered MDF wall paneling on three of the compartment walls increased the pre-suppression peak heat release rate to 12 MW. In each experiment during post flashover exposure, the insulation on the cords and cables ignited and burned through, exposing bare wire. During this period, the circuits faulted. Assessments of both the thermal exposure and physical damage to the cords did not reveal any correlation between the thermal exposure, cord/cable damage, and trip type.  相似文献   

17.
Critical velocity and smoke back-layering length are two of the determining parameters to the fire risk assessment of subway tunnel. These two parameters of a sloping subway tunnel with train blockage were investigated both experimentally and numerically in this paper. To address the influences of slope, the slopes of 0, 3, 6, 9, 12, 15% in downhill subway tunnel were studied and the height (H) of the tunnel was replaced by the inclined tunnel height (\( H/\cos \theta \)). The train model with a dimension of 2 m (length) × 0.3 m (width) × 0.38 m (height) was also chosen in simulations and experiments for the tunnel blockage. Thenceforward, 30 reduced-scale experimental and 150 numerical scenarios were analyzed to predict the critical velocity and smoke back-layering length in various sloping subway tunnels. Six different heat release rates including 5.58, 11.17, 16.67, 22.35, 27.94, and 33.52 kW were considered in the experiments and five different heat release rates including 2.79, 5.58, 8.38, 11.17 and 16.67 kW were considered in the simulations. Based on the comparison in the horizontal tunnel, numerical results were quite consistent with the experiments. The results showed that train blockage influenced the smoke back-layering length, and the critical velocity increases with the tunnel slope. Finally, empirical models were developed to predict the critical velocity and smoke back-layering length in a sloping subway tunnel with train blockage.  相似文献   

18.
Curved tunnels are inevitable subjected to the city underground geological conditions. Due to the catastrophic consequence of tunnel fires with high population density, the related researches on fire safety of curved tunnel are full of significance. Therefore, a series of curved subway tunnels with turning radius of 300–1000 m were investigated numerically by FDS 5.5.3 in terms of the smoke back-layering length and critical ventilation velocity under the heat release rate of 5–10 MW. Theoretical analysis shows that the curved tunnel with the local resistance has an advantage of preventing smoke spreading compared with straight tunnel. The simulation results also indicated that both the smoke back-layering length and the critical ventilation velocity increased with the rising turning radius, and the straight tunnel has the largest values. In fact, the local resistance impact factor for the smoke back-layering length in the curved tunnel, \( k_{f} \), was controlled by turning radius \( R \) and ventilation velocity \( V \). The dimensionless critical velocity increased slightly from \( 0.638Q^{*1/3} \) to \( 0.669Q^{*1/3} \) when the turning radius increased from 300 m to 1000 m. Without considering the influence of turning radius (local resistance), previous models cannot be applied to the curved tunnel. The improved prediction models about smoke back-layering length and critical velocity with the factor of turning radius could provide a technical guideline for the tunnel ventilation designs.  相似文献   

19.
隧道火灾时拱顶最高烟气温度的预测对于隧道防火安全设计具有很重要的意义。通过1/10隧道火灾缩尺模型实验得到了不同火源热释放率、不同通风速度下隧道顶棚最高温度测试值,并与现有的温度模型预测值进行了对比,发现现有模型对于无风及风速较小的情况,或多或少存在缺陷。另外在实际情况中车辆通常占据一部分的隧道断面积,所形成的阻塞效应不可忽略。为此,进行了不同阻塞比情况下的实验,发现现有的温度模型与不同阻塞比下的实验数据相差较大。最后,基于本文实验数据对Kurioka温度模型进行了修正,所提出的修正模型与已有的其他实验数据吻合也较好。  相似文献   

20.
Residential highrise building fire of height above 200 m is now a concern in the Far East. Long-term survey study on fire load density indicated that high amount of combustibles over the local upper limit of 1135 M Jm−2 used to be stored in residential flats. Wind-induced air-flow rates through openings at upper levels of those tall buildings can be very high. Stack effect in areas with large indoor and outdoor temperature differences (such as 14 °C indoor and − 30 °C outdoor at Harbin, Heilongjiang, China) will also give high ventilation rate through leakage areas. Adequate oxygen is then supplied to burn up all stored combustibles to give a big fire. In applying performance-based design to determine the fire safety provisions, heat release rate of the design fire is the first parameter to decide. In this paper, stack effect and wind action on possible increase in the heat release rate for fires in supertall residential buildings will be explored. Air intake rates through openings to rooms at high levels due to stack effect and wind action are estimated by simple empirical formula. The maximum heat release rates for well-developed room fires in these tall buildings under different stack and wind conditions are determined by varying two parameters. Air flow rate through openings in an 800 m tall building induced by wind gust can be over 20 times the value at ground level. Consequently, heat release rate can be much higher, confirming experimental studies on building fires under wind action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号