首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retinoic acid has considerable potential for the chemoprevention and chemotherapy of cancer. Neuroblastoma cells differentiate in response to retinoic acid in vitro, an observation that has led to clinical trials using either the 13-cis or all-trans isomers of retinoic acid. We review the effects of retinoic acid on neuroblastoma, and the potential involvement of nuclear retinoic acid receptors (RARs) and retinoid X receptors (RXRs). 9-cis retinoic acid is a ligand for RXRs, and we review recent data on the differential effects of 9-cis and all-trans retinoic acid on neuroblastoma differentiation and proliferation in vitro, and possible mechanisms of action via hetero- and homodimers of RARs and RXRs. Although there is uncertainty whether or not 9-cis retinoic acid produces its biological effects primarily via RXR homodimers, in vitro data suggest that this isomer of retinoic acid or stable analogues may have considerable potential for the treatment of resistant, disseminated neuroblastoma.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
The nuclear signaling pathways for retinoids and vitamin D differ in the specificity of the respective receptors for response elements. Two pathways for the action of both retinoic acid receptors (RARs) and vitamin D receptors (VDRs) have been identified, one being retinoid X receptor (RXR)-dependent and the other being RXR-independent. Moreover, RXRs were found to function as homodimers. In several steps we converted the retinoid specific response element of the human retinoic acid receptor beta promoter into the vitamin D/retinoic acid response element of the human osteocalcin promoter. We found that VDR homodimers only bind to the motif RGGTGA. The extended osteocalcin element also contains an imperfect direct repeat based on the motif RGGTGA spaced by three nucleotides, which is bound by RXR homodimers and activated by 9-cis-retinoic acid. The responsiveness of the osteocalcin element to all-trans-retinoic acid is mediated neither by RAR homodimers nor by RAR-RXR heterodimers. However, a VDR-RAR heterodimer binds to the osteocalcin response element and mediates activation by all-trans-retinoic acid. This heterodimer also binds to pure retinoid response elements, but it does not mediate activation by vitamin D alone. In combination with all-trans-retinoic acid, however, vitamin D enhances VDR-RAR heterodimer-mediated gene expression. This finding suggests a direct interaction between nuclear signaling by retinoic acid and vitamin D increasing the combinatorial possibilities for gene regulation by the nuclear receptors involved.  相似文献   

11.
Retinoic acid is one of the most promising drugs for chemotherapy and chemoprevention of cancer. Either blocking activator protein-1 (AP-1) activity or activating retinoic acid response element (RARE) have been proposed to be responsible for its antitumor activity. However, evidence for this hypothesis is lacking in vivo studies. To address this issue, we used an AP-1-luciferase transgenic mouse as a carcinogenesis model and new synthetic retinoids that are either selective inhibitors of AP-1 activation or selective activators of the RARE. The results showed that the SR11302, an AP-1 inhibition-specific retinoid, and other AP-1 inhibitors such as trans-retinoic acid and fluocinolone acetonide, markedly inhibit both 12-O-tetradecanoylphorbol-13-acetate-induced papilloma formation and AP-1 activation in 7,12-dimethyl benz(a)anthracene-initiated mouse skin (P < 0.05). In contrast, repeated applications of SR11235, a retinoid with RARE transactivating activity, but devoid of AP-1 inhibiting effect, did not cause significant inhibition of papilloma formation and AP-1 activation (P > 0.05). These results provide the first in vivo evidence that the antitumor effect of retinoids is mediated by blocking AP-1 activity, but not by activation of RARE.  相似文献   

12.
13.
14.
15.
16.
Retinoids are promising agents for cancer chemoprevention and therapy. Nuclear retinoic acid receptors (RARs; RARalpha, -beta, and -gamma) and retinoid X receptors (RXRs; RXRalpha, -beta, and -gamma) are thought to mediate most of retinoids' effects on cell growth and differentiation. Because the majority of human non-small cell lung carcinoma (NSCLC) cell lines are resistant to all-trans-retinoic acid, we searched for more potent retinoids. Therefore, we examined the effects of 37 natural and synthetic retinoids that exhibit specific binding to and transactivation of individual RARs or RXRs on the proliferation of eight human NSCLC cell lines. All of these cells expressed mRNAs of the three RXRs; however, they expressed varying levels of RARalpha and RARgamma, and only three of the eight cell lines expressed RARbeta mRNA. Cellular retinoic acid-binding proteins (CRABPs) I and II were detected in one and three of the eight cell lines, respectively. Only 8 of the 37 retinoids exhibited growth-inhibitory activity (IC50, < 10 microM) against at least two of the eight NSCLC cell lines. The active retinoids included one (TD550) of five RARalpha-selective, one (Ch55) of three RARbeta-selective, three (CD437, CD2325, and SR11364) of six RARgamma-selective, and one (CD271) of four RARbeta/gamma-selective retinoids. The potency of these retinoids was low (IC50, > 1 microM), except for CD437, which was very potent (IC50, 0.1-0.5 microM). The six RXR-selective retinoids were mostly inactive even at 10 microM. However, combinations of RAR-selective and RXR-selective retinoids exhibited additive effects. There appeared to be no simple correlation among the histological type of the NSCLC (adeno- or squamous), the levels of nuclear receptors or CRABPs, and the response of the cells to the growth-inhibitory effects of retinoids. Nevertheless, in contrast with former studies with natural retinoids, these results suggest that several synthetic retinoids do exhibit inhibitory activity against NSCLC cells, and some of them may be useful clinically.  相似文献   

17.
18.
We report identification of 9-cis-4-oxo-retinoic acid (9-cis-4-oxo-RA) as an in vivo retinoid metabolite in Xenopus embryos. 9-Cis-4-oxo-RA bound receptors (RARs) alpha, beta, and gamma as well as retinoid X receptors (RXRs) alpha, beta, and gamma in vitro. However, this retinoid displayed differential RXR activation depending on the response pathway used. Although it failed to activate RXRs in RXR homodimers, it activated RXRs and RARs synergistically in RAR-RXR heterodimers. 9-Cis-4-oxo-RA thus acted as a dimer-specific agonist. Considering that RAR-RXR heterodimers are major functional units involved in transducing retinoid signals during embryogenesis and that 9-cis-4-oxo-RA displayed high potency for modulating axial pattern formation in Xenopus, metabolism to 9-cis-4-oxo-RA may provide a mechanism to target retinoid action to this and other RAR-RXR heterodimer-mediated processes.  相似文献   

19.
Retinoids (vitamin A and its metabolites) are suspected of regulating diverse aspects of growth, differentiation, and patterning during embryogenesis, but many questions remain about the identities and functions of the endogenous active retinoids involved. The pleiotropic effects of retinoids may be explained by the existence of complex signal transduction pathways involving diverse nuclear receptors of the retinoic acid receptor (RAR) and retinoid X receptor (RXR) families, and at least two types of cellular retinoic acid binding proteins (CRABP-I and -II). The different RARs, RXRs, and CRABPs have different expression patterns during vertebrate embryogenesis, suggesting that they each have particular functions. Another level at which fine tuning of retinoid action could occur is the metabolism of vitamin A to active metabolites, which may include all-trans-retinoic acid, all-trans-3,4-didehydroretinoic acid, 9-cis-retinoic acid, and 14-hydroxy-4,14-retroretinol. Formation of the metabolite all-trans-4-oxo-retinoic acid from retinoic acid was considered to be an inactivation pathway during growth and differentiation. We report here that, in contrast, 4-oxo-retinoic acid is a highly active metabolite which can modulate positional specification in early embryos. We also show that this retinoid binds avidly to and activates RAR beta, and that it is available in early embryos. The different activities of 4-oxo-retinoic acid and retinoic acid in modulating positional specification on the one hand, and growth and differentiation on the other, interest us in the possibility that specific retinoid ligands regulate different physiological processes in vivo.  相似文献   

20.
The diverse biological functions of retinoic acid (RA) are mediated through retinoic acid receptors (RARs) and retinoid X receptors. RARs contain a high affinity binding site for RA which is sensitive to treatment with sulfhydryl modification reagents. In an attempt to identify which Cys residues are important for this loss of binding, we created three site-specific RARbeta mutants: C228A, C258A, and C267A. The affinity for RA of all three mutant receptors was in the range of that of the wild type protein, suggesting that none of these Cys residues are critical for RA binding. Rather, these modified Cys residue(s) function to sterically hinder RA binding; however, the modified Cys residues critical for the inhibition of binding differ depending on the reagent employed. Only modification of Cys228 is necessary to inhibit RA binding when RARbeta is modified by reagents which transfer large bulky groups while both Cys228 and Cys267 must be modified when a small functional group is transferred. These data suggest that both Cys228 and Cys267 but not Cys258 lie in the ligand binding pocket of RARbeta. However, Cys228 lies closer to the opening of the RARbeta ligand binding pocket whereas Cys267 lies more deeply buried.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号