首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Mo-Zr system was critically assessed using the calculation of phase diagrams (CALPHAD) technique. The solution phases (liquid, bcc, and cph) were modeled with the Redlich-Kister expression for the excess Gibbs energy. The intermetallic Mo2Zr Laves phase, which has a measurable homogeneity range, was treated by a two-sublattice model with Mo and Zr on both sublattices. A set of self-consistent thermodynamic parameters for the Mo-Zr system was obtained. With the optimized functions for the Gibbs energy of the individual phases, most of the experimental information can be well reproduced.  相似文献   

2.
The phase diagram in the Co–Zr system was determined using the electron probe microanalyzer (EPMA), differential thermal analysis (DTA) and X-ray diffraction (XRD) technique. The experimental results indicate that (1) the solubility region of the Co2Zr phase is from 25 to 34 at.% Zr; (2) the CoZr3 phase exists and the temperature of the peritectoid reaction (CoZr2 + (βZr) ↔ CoZr3) is about 981 °C; (3) the solubilities of Zr in the (αCo) phase and Co in the (βZr) phase are about 0.15 and 2.5 at.%, respectively. A thermodynamic assessment of the Co–Zr binary system was carried out by the CALPHAD (calculation of phase diagrams) method. The Gibbs free energies of the solution phases (liquid, fcc, bcc and hcp) were described by the subregular solution model, and those of the intermetallic compounds (Co11Zr2, Co23Zr6, Co2Zr, CoZr, CoZr2 and CoZr3) were described by the sublattice model. A proper set of the thermodynamic parameters has been derived for describing the Gibbs free energies of each phase in the Co–Zr system. An agreement between the calculated results and experimental data is obtained.  相似文献   

3.
The aim of this work is to elucidate the formation of the amorphous phase in the Cu−Zr binary alloy system. It was found that 1 mm diameter rods with a fully amorphous structure can be prepared in a relatively wide range of compositions. In contrast, the formation of 2 mm diameter rods was achieved only for the Cu64Zr36 alloy and in the range of Cu53Zr47−Cu50Zr50, which are compositions near the energetically stable Cu2Zr and CuZr intermetallic compounds. The difference between the calculated Gibbs free energy of the amorphous phase and the intermetallic compounds gives insight into the range of glass formation. In addition, the formation of the energetically stable phases can be kinetically by-passed owing to the crystallization of several competing phases.  相似文献   

4.
5.
The thermodynamic assessment of the binary system Ti-Ir has been carried out by modeling the Gibbs energy of all individual phases using the calculation of phase diagrams approach based on the available literature data including the phase equilibria and thermodynamic properties. The Gibbs free energies of the liquid, bcc, fcc and hcp phases were described by the subregular solution model with Redlich-Kister formula, and those of the intermetallic compounds (Ti3Ir, γTiIr, βTiIr and TiIr3) in the Ti-Ir binary system were described by the two-sublattice model. The calculations are in good agreement with the literature data on both phase equilibria and thermodynamic properties in the Ti-Ir system.  相似文献   

6.
Based on an assessment of the available experimental thermochemical and phase diagram information available, the phase equilibria of the C-Hf-Zr system were calculated. The G of the individual phases was described with thermodynamic models. The liquid phase was described as a substitutional solution using the Redlich-Kister formalism for excess G. Graphite was treated as a stoichiometric phase. The solid solutions of carbon in α(Hf,Zr) and β(Hf,Zr), as well as the non-stoichiometric phase (Hf,Zr)C1−x, were represented as interstitial solid solutions using the compound energy model with two sublattices. The parameters in the models were determined by computerized optimization using selected experimental data. A detailed comparison was made between calculation and experimental data.  相似文献   

7.
在含有不同氟离子浓度的硅酸钠电解液体系中,采用恒压微弧氧化技术对AZ31镁合金进行表面处理,通过XRD、SEM、EDS等研究镁合金表面微弧氧化膜层形貌和相结构特征,探讨氟离子对膜层形成的影响规律.研究结果表明:随着氟离子浓度的增加,膜层微孔数量逐渐减少,微孔孔径逐渐变大且分布均匀,但氟离子浓度过高时,膜层缺陷增多,出现微裂纹和局部孔径较大的微孔;微弧氧化膜层主要由MgAl2O4和MgSiO3组成,其含量随着氟离子浓度的变化而变化,当氟离子浓度范围为2~4 g/L时微弧氧化膜中MgAl2O4和MgSiO3的含量最高;动电位极化曲线表明微弧氧化膜的耐腐蚀性能也随之呈先增后减的趋势.  相似文献   

8.
Amorphous alloys were formed in an immiscible Y–Zr system by ion mixing and thermal annealing of multilayered films consisting of nine alternate metal layers. In addition, two metastable crystalline phases, i.e. a fcc Zr-rich and a fcc Y-rich phase, were also obtained. A compatible thermodynamic interpretation was proposed and illustrated by a Gibbs free energy diagram, which was constructed based on Miedema's model and included the free energy curve of the multilayered films possessing excess interfacial energy. The formation mechanism of the metastable crystalline phase is also discussed in terms of the electronic structure as well as the growth kinetics.  相似文献   

9.
Based on an assessment of the available experimental thermochemical and phase diagram information available, the phase equilibria of the C-Hf-Zr system were calculated. The G of the individual phases was described with thermodynamic models. The liquid phase was described as a substitutional solution using the Redlich-Kister formalism for excess G. Graphite was treated as a stoichiometric phase. The solid solutions of carbon in α(Hf,Zr) and β(Hf,Zr), as well as the non-stoichiometric phase (Hf,Zr)C1?x, were represented as interstitial solid solutions using the compound energy model with two sublattices. The parameters in the models were determined by computerized optimization using selected experimental data. A detailed comparison was made between calculation and experimental data.  相似文献   

10.
11.
12.
The optimized thermodynamic data for the Te- TI binary system have been obtained by the computer operated least squares method from measured data. The Gibbs energy of the liquid phase was modeled as a two- sublattice model for ionic melt after Hillert.31 The intermediate compounds, Te3Tl{2}and TeTl, were treated as stoichiometric phases, and the nonstoichiometric γ phase was expressed as a sublattice model. A strong tendency for chemical short- range order in the liquid state at the composition close to TeTh was confirmed by calculated results, but the existence of the TeTh phase was not justified. The experimental thermodynamic and phase diagram data were closely reproduced by the optimized thermodynamic data. Parameters describing the Gibbs energies of all the phases in this calculation and the calculated phase diagram and thermodynamic functions are presented and compared with experimental information.  相似文献   

13.
The optimized thermodynamic data for the Te- TI binary system have been obtained by the computer operated least squares method from measured data. The Gibbs energy of the liquid phase was modeled as a two- sublattice model for ionic melt after Hillert.31 The intermediate compounds, Te3Tl{2}and TeTl, were treated as stoichiometric phases, and the nonstoichiometric γ phase was expressed as a sublattice model. A strong tendency for chemical short- range order in the liquid state at the composition close to TeTh was confirmed by calculated results, but the existence of the TeTh phase was not justified. The experimental thermodynamic and phase diagram data were closely reproduced by the optimized thermodynamic data. Parameters describing the Gibbs energies of all the phases in this calculation and the calculated phase diagram and thermodynamic functions are presented and compared with experimental information.  相似文献   

14.
The phase diagram of the binary Fe-Zr system was redetermined by differential thermal analysis (DTA), electron-probe microanalysis (EPMA), x-ray diffraction (XRD), and metallography in the whole range of compositions. The stable intermetallic phases of the binary system are the cubic and the hexagonal polymorphs of the Fe2Zr Laves phase and the Zr-rich phases FeZr2 and FeZr3. While the cubic polymorph of the Laves phase is the stable structure at the stoichiometric Fe2Zr composition, the hexagonal C36-type polymorph of the Laves phase is a high-temperature phase that is found at Zr concentrations as low as 26.6 at.%. The Zr-rich phases FeZr2 and FeZr3 have small homogeneity ranges of about 0.5 at.%. FeZr2 is a high-temperature phase, stable between 780 and 951 °C. FeZr3 decomposes peritectoidally at 851 °C. The frequently reported phase Fe23Zr6 (Fe3Zr) is found not to be an equilibrium phase of the binary system.  相似文献   

15.
The phase diagram of the binary Fe-Zr system was redetermined by differential thermal analysis (DTA), electron-probe microanalysis (EPMA), x-ray diffraction (XRD), and metallography in the whole range of compositions. The stable intermetallic phases of the binary system are the cubic and the hexagonal polymorphs of the Fe2Zr Laves phase and the Zr-rich phases FeZr2 and FeZr3. While the cubic polymorph of the Laves phase is the stable structure at the stoichiometric Fe2Zr composition, the hexagonal C36-type polymorph of the Laves phase is a high-temperature phase that is found at Zr concentrations as low as 26.6 at.%. The Zr-rich phases FeZr2 and FeZr3 have small homogeneity ranges of about 0.5 at.%. FeZr2 is a high-temperature phase, stable between 780 and 951 °C. FeZr3 decomposes peritectoidally at 851 °C. The frequently reported phase Fe23Zr6 (Fe3Zr) is found not to be an equilibrium phase of the binary system.  相似文献   

16.
The C-Mo-Zr system was assessed by means of the CALPHAD approach. All of the phase equilibria available from the literature were critically reviewed. The liquid was modeled as substitutional solution phase, while the carbides including fcc-(Mo,Zr)C1?x, bcc-(Mo), bcc-(Zr), hcp-Mo2C, hcp-(Zr) and η-MoC were described by using corresponding sublattice models. The laves-Mo2Zr and shp-MoC phases were considered as binary compounds with no solubility for the third component. The existence of ternary phase was not reported in this system. The modeling of C-Mo-Zr ternary system covers the entire composition and temperature ranges, and a set of self-consistent thermodynamic parameters for the C-Mo-Zr system was systematically optimized. Comprehensive comparisons between the calculated and reported phase diagram data show that the reliable information is satisfactorily accounted for by the present modeling. The liquidus projection and reaction scheme of the C-Mo-Zr system were also generated based on the present thermodynamic assessment.  相似文献   

17.
The types of information required for the calculation of phase diagrams are discussed by considering the computation of typical ternary sections from the constituent, binary systems. Such calculations require a knowledge of the Gibbs energy of transformation (lattice stabilities) and Gibbs energies of mixing of wholly metastable, as well as stable, phases in binary systems. Similarly, the stabilities of metastable compounds, such as Fe7C3, would be required for computations in the C?Cr?Fe system. These requirements are compared to the information provided by solid-state theoreticians.  相似文献   

18.
19.
20.
Zirconium has recently garnered attention for use as a diffusion barrier between U–Mo nuclear fuels and Al cladding alloys. Interdiffusion and reactions between Zr and Al, Al-2 wt.% Si, Al-5 wt.% Si or AA6061 were investigated using solid-to-solid diffusion couples annealed in the temperature range of 425° to 625 °C. In the binary Al and Zr system, the Al3Zr and Al2Zr phases were identified, and the activation energy for the growth of the Al3Zr phase was determined to be 347 kJ/mol. Negligible diffusional interactions were observed for diffusion couples between Zr vs. Al-2 wt.% Si, Al-5 wt.% Si and AA6061 annealed at or below 475 °C. In diffusion couples with the binary Al–Si alloys at 560 °C, a significant variation in the development of the phase constituents was observed including the thick τ1 (Al5SiZr2) with Si content up to 12 at.%, and thin layers of (Si,Al)2Zr, (Al,Si)3Zr, Al3SiZr2 and Al2Zr phases. The use of AA6061 as a terminal alloy resulted in the development of both τ1 (Al5SiZr2) and (Al,Si)3Zr phases with a very thin layer of (Al,Si)2Zr. At 560 °C, with increasing Si content in the Al–Si alloy, an increase in the overall rate of diffusional interaction was observed; however, the diffusional interaction of Zr in contact with multicomponent AA6061 with 0.4–0.8 wt.% Si was most rapid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号