首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 57 毫秒
1.
Ferrochelatase catalyzes the chelation of ferrous iron and protoporphyrin to form heme. It is expressed as a housekeeping gene in all cells, but is upregulated during erythropoiesis. Ferrochelatase activity is deficient in the inherited disease protoporphyria as a result of heterogeneous mutations. Although human ferrochelatase is transcribed from a single promoter in both nonerythroid and erythroid cells, previous studies using transient transfection assays failed to demonstrate erythroid-specific increased expression from 4.0 kb of the human ferrochelatase promoter containing the erythroid cis-elements, GATA and NF-E2. The present study analyzes the in vivo regulation of the ferrochelatase gene to provide insights into the mechanism of its erythroid-specific enhancement. Transgenic (TG) mouse lines were generated in which the luciferase reporter gene was driven by either a 150-bp ferrochelatase minimal promoter (-0.15 TG) or by a 4.0 kb extended 5' upstream region (-4.0 TG). Expression of the -4.0 TG transgene was generally consistent with the endogenous gene during embryonic development and in nonerythroid and erythroid tissues as demonstrated by Northern blotting and mRNA in situ hybridization. The -4.0 TG was expressed at a higher level than the -0.15 TG in nonerythroid and erythroid tissues, including during extramedullary erythropoiesis induced by n-acetylphenylhydrazine injection. The enhanced erythroid expression of the -4.0 TG correlates with the appearance of a DNase I hypersensitive site in the 5' flanking region of the transgene. Therefore, in the context of chromosomal integration, the 5' flanking region of the ferrochelatase gene is necessary and sufficient to confer high levels of transgene expression in erythroid tissue.  相似文献   

2.
In this study we examine regulation of expression of the Na+/H+ exchanger promoter in L6 and NIH 3T3 cells. We have identified a highly conserved poly(dA dT)-rich region that appears to be important in regulation of expression of the NHE1 gene. Deletion or mutation of this region results in dramatic decreases in promoter activity in both L6 and NIH 3T3 cells. In addition, DNase I footprinting experiments demonstrated that this region is protected by nuclear extracts from both cell types, and gel mobility shift assays showed that a protein or proteins specifically binds to the poly(dA dT)-rich element. Using Southwestern blotting, we determined that a 33-kDa protein binds to the poly(dA dT)-containing region. Mutations that abolished protein binding to this element diminished activity of the promoter. Insertion of the poly(dA dT)-rich element into a plasmid containing the SV40 promoter demonstrated that this element can also enhance the activity of a foreign promoter. Together, the results we have presented here show that the poly(dA dT)-rich region is important in regulation of NHE1 expression in different cell types.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
In the rat platelet factor 4 (PF4) promoter, Ets motifs and GATA motifs are located at positions -880, -75 and -135, -30, respectively, and their motifs are found in the promoter region of most megakaryocyte protein genes. In order to investigate how the Ets and GATA motifs affect PF4 promoter activity, we constructed Ets and/or GATA motif mutant genes. A single disruption of either -75Ets, -135GATA, or -30GATA significantly reduced PF4 promoter activity, and double disruptions involving these motifs completely abolished it. Furthermore, gel-retardation assays revealed that Ets-1 and GATA-1 proteins from HEL and MEG-01 cells bound to the Ets motifs and GATA motifs, respectively. Co-transfection experiments showed that the overexpression of Ets-1 and/or GATA-1 enhanced the expression of the PF4 promoter reporter gene. These effects of Ets-1 and GATA-1 on PF4 promoter activity are additive. When HEL cells were treated with dimethylsulfoxide in order to induce differentiation into megakaryocytes, the mRNA level of ets-1 increased 10-fold, which might be directly correlated with the significant increase in PF4 mRNA level induced by dimethylsulfoxide. All these results strongly suggest that both Ets-1 and GATA-1 play key roles in the positive regulation of PF4 gene expression.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号