共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmon-coupled tip-enhanced near-field optical microscopy 总被引:3,自引:0,他引:3
Near the cut‐off radius of a guided waveguide mode of a metal‐coated glass fibre tip it is possible to couple radiation to surface plasmons propagating on the outside surface of the metal coating. These surface plasmons converge toward the apex of the tip and interfere constructively for particular polarization states of the initial waveguide mode. Calculations show that a radially polarized waveguide mode can create a strong field enhancement localized at the apex of the tip. The highly localized enhanced field forms a nanoscale optical near‐field source. 相似文献
2.
Applications of field-enhanced near-field optical microscopy 总被引:1,自引:0,他引:1
Metal nanostructures such as sharp tips can enhance emission yields through shape-induced local field enhancement. The enhancement originates from two mechanisms: surface plasmons and electrostatic lightening rod effects. We present fluorescence imaging using the strong local field created at the apex of a gold tip and demonstrate optical resolution of 25 nm. The enhancement effect gives also rise to photoemission from the tip itself. Measured spectra of the tip emission show a broad band continuum together with a second-harmonic peak. Both continuum and second-harmonic are confined at the apex of the tip. We find that, depending on the spectral position, the photoluminescence originates either from intraband or from interband transitions. The nonlinear response can be described by a single dipole oscillating at the second-harmonic frequency and oriented along the tip axis. These unique properties can be used to map focal fields distributions. 相似文献
3.
T. Niwa Y. Mitsuoka K. Kato S. Ichihara N. Chiba M. Shin-Ogi K. Nakajima H. Muramatsu & T. Sakuhara 《Journal of microscopy》1999,194(2-3):388-392
We develop a novel optical microcantilever for scanning near-field optical microscopy controlled by atomic force mode (SNOM/AFM). The optical microcantilever has the bent channel waveguide, the corner of which acts as aperture with a large tip angle. The resonance frequency of the optical microcantilever is 9 kHz, and the spring constant is estimated to be 0.59 N/m. The optical microcantilever can be operated in contact mode of SNOM/AFM and we obtain the optical resolution of about 200 nm, which is as same size as the diameter of aperture. We confirm that the throughput of optical microcantilever with an aperture of 170 nm diameter would be improved to be more than 10−5 . 相似文献
4.
A novel technique for scanning near‐field optical microscopy capable of point‐contact current‐sensing was developed in order to investigate the nanometre‐scale optical and electrical properties of electrochromic materials. An apertureless bent‐metal probe was fabricated in order to detect optical and current signals at a local point on the electrochromic films. The near‐field optical properties could be observed using the local field enhancement effect generated at the edge of the metal probe under p‐polarized laser illumination. With regard to electrical properties, current signal could be detected with the metal probe connected to a high‐sensitive current amplifier. Using the current‐sensing scanning near‐field optical microscopy, the surface topography, optical and current images of coloured WO3 thin films were observed simultaneously. Furthermore, nanometre‐scale electrochromic modification of local bleaching could be performed using the current‐sensing scanning near‐field optical microscopy. The current‐sensing scanning near‐field optical microscopy has potential use in various fields of nanometre‐scale optoelectronics. 相似文献
5.
Surface-polariton propagation for scanning near-field optical microscopy application 总被引:1,自引:0,他引:1
F. Keilmann 《Journal of microscopy》1999,194(2-3):567-570
Surface plasmon-, phonon- and exciton-polaritons exist on specific materials in specific spectral regions. We assess the properties of such travelling surface-bound electromagnetic waves relevant for scanning near-field optical microscopy applications, i.e. the tightness of surface binding, the attenuation, the phase velocity and the coupling with free-space electromagnetic waves. These quantities can be directly determined by photographic imaging of surface plasmon- and surface phonon-polaritons, in both the visible and mid-infared regions. Focusing of mid-infrared surface plasmons is demonstrated. Surface waveguides to transport and focus photons to the tip of a scanning near-field probe are outlined. 相似文献
6.
H. U. Danzebrink TH. Dziomba T. Sulzbach O. Ohlsson C. Lehrer & L. Frey 《Journal of microscopy》1999,194(2-3):335-339
The near-field probes described in this paper are based on metallized non-contact atomic force microscope cantilevers made of silicon. For application in high-resolution near-field optical/infrared microscopy, we use aperture probes with the aperture being fabricated by focused ion beams. This technique allows us to create apertures of sub-wavelength dimensions with different geometries. In this paper we present the use of slit-shaped apertures which show a polarization-dependent transmission efficiency and a lateral resolution of < 100 nm at a wavelength of 1064 nm. As a test sample to characterize the near-field probes we investigated gold/palladium structures, deposited on an ultrathin chromium sublayer on a silicon wafer, in constant-height mode. 相似文献
7.
SNOM is a non-contact stylus microscopy analogous to STM. Optical near-field interaction is used to sense approach and optical properties on the nanometre scale (?1 nm normal, 20–50 nm lateral). SNOM was demonstrated in transmission and reflection, in a topographic mode, and with amplitude as well as phase objects. The excitation of plasmons in the SNOM ‘tip’, a very recent development, greatly enhances sensitivity and permits intriguing new optical experiments. Overcoming the limit of diffraction, SNOM turns a long-held dream of optical microscopists into reality. 相似文献
8.
The shear force between a gold and a graphite sample and an approaching near-field optical probe using tuning fork detection is studied in detail. The adiabatic and dissipative contributions are clearly distinguished by monitoring the amplitude as well as the phase of the tip vibration when approaching the surfaces. Their relative strengths vary differently but characteristically with the distance. The interaction starts in case of graphite at a much larger distance. The adiabatic contribution is larger in the case of gold, whereas graphite shows mostly dissipative interaction. Measurements at various temperatures are performed using a gold sample, showing a dependence of the shear force on the temperature. 相似文献
9.
10.
The newly developed inverted tapping-mode tuning-fork near-field scanning optical microscopy (TMTF-NSOM) is used to study the local near-field optical properties of strained AlGaInP/Ga0.4 In0.6 P low power visible multiquantum-well laser diodes. In contrast to shear-force mode NSOM, TMTF-NSOM provides the function to acquire the evanescent wave intensity ratio | I (2ω)|/| I (ω)| image, from which the evanescent wave decay coefficient q can be evaluated for a known tapping amplitude. Moreover, we probe the near-field stimulated emission spectrum, which gives the free-space laser light wavelength λo and the index of refraction n r of the laser diode resonant cavity. Once q , λo , and n r are all measured, we can determine the angle of incidence θo of the dominant totally internally reflected waves incident on the front mirror facet of the resonator. Determination of such an angle is very important in modelling the stability of the laser diode resonator. 相似文献
11.
Hillenbrand R 《Ultramicroscopy》2004,100(3-4):421-427
Diffraction limits the spatial resolution in classical microscopy or the dimensions of optical circuits to about half the illumination wavelength. Scanning near-field microscopy can overcome this limitation by exploiting the evanescent near fields existing close to any illuminated object. We use a scattering-type near-field optical microscope (s-SNOM) that uses the illuminated metal tip of an atomic force microscope (AFM) to act as scattering near-field probe. The presented images are direct evidence that the s-SNOM enables optical imaging at a spatial resolution on a 10 nm scale, independent of the wavelength used (λ=633 nm and 10 μm). Operating the microscope at specific mid-infrared frequencies we found a tip-induced phonon-polariton resonance on flat polar crystals such as SiC and Si3N4. Being a spectral fingerprint of any polar material such phonon-enhanced near-field interaction has enormous applicability in nondestructive, material-specific infrared microscopy at nanoscale resolution. The potential of s-SNOM to study eigenfields of surface polaritons in nanostructures opens the door to the development of phonon photonics—a proposed infrared nanotechnology that uses localized or propagating surface phonon polaritons for probing, manipulating and guiding infrared light in nanoscale devices, analogous to plasmon photonics. 相似文献
12.
We describe an apertureless scanning near-field optical microscope (SNOM) based on the local second-harmonic generation enhancement resulting from an electromagnetic interaction between a probe tip and a surface. The imaging mechanisms of such apertureless second-harmonic SNOM are numerically studied. The technique allows one to achieve strongly confined sources of second-harmonic light at the probe tip apex and/or surface area under the tip. First experimental realization of this technique has been carried out using a silver-coated fibre tip as a probe. The experiments reveal a strong influence of the tip–surface interaction as well as polarization of the excitation light on images obtained with apertureless second-harmonic SNOM. The technique can be useful for studying the localized electromagnetic excitations on surfaces as well as for visualization of lateral variations of linear and nonlinear optical properties of surfaces. 相似文献
13.
14.
Near-field scanning optical microscopy (NSOM) is a scanned probe technique utilizing a subwavelength-sized light source for high-resolution imaging of surfaces. Although NSOM has the potential to exploit and extend the experimental utility of the modern light microscope, the interpretation of image contrast is not straightforward. In near-field microscopy the illumination intensity of the source (probe) is not a constant value, rather it is a function of the probe–sample electronic environment. A number of dielectric specimens have been studied by NSOM to elucidate the contrast role of specimen type, topography and crystallinity; a summary of metallic specimen observations is presented for comparative purposes. Near-field image contrast is found to be a result of lateral changes in optical density and edge scattering for specimens with little sample topography. For surfaces with considerable topography the contributions of topographic (Z) axis contrast to lateral (X,Y) changes in optical density have been characterized. Selected near-field probes have also been shown to exhibit a variety of unusual contrast artefacts. Thorough study of polarization contrast, optical edge (scattering) contrast, as well as molecular orientation in crystalline specimens, can be used to distinguish lateral contrast from topographic components. In a few cases Fourier filtering can be successfully applied to separate the topographic and lateral contrast components. 相似文献
15.
M. H. P. MOERS W. H. J. KALLE A. G. T. RUITER J. C. A. G. WIEGANT A. K. RAAP J. GREVE B. G. DE GROOTH N. F. VAN HULST 《Journal of microscopy》1996,182(1):40-45
Fluorescence in situ hybridization on human metaphase chromosomes is detected by near-field scanning optical microscopy. This combination of cytochemical and scanning probe techniques enables the localization and identification of several fluorescently labelled genomic DNA fragments on a single chromosome with an unprecedented resolution. Three nucleic acid probes are used: pUC1. 77. p1–79 and the plasmid probe α-spectrin. The hybridization signals are very well resolved in the near-field fluorescence images, while the exact location of the probes can be correlated accurately with the chromosome topography as afforded by the shear force image. 相似文献
16.
This study describes a single gold nanoparticle (AuNP)-based observation of biomolecular interaction using a near-field scanning microscope (NSOM) in transmission mode. To observe streptavidin molecules, a glass surface was first patterned with a micro-scale line of (3-aminopropyl)trimethoxysilane (APTMS) by micro-contact printing (μCP) with a subsequent reaction of N-hydroxysuccinimide (NHS)-biotin. The AuNP-conjugated streptavidin was then applied to the biotin-modified glass surface and NSOM was employed to detect the resulting specific interaction between streptavidin and biotin on the glass surface. Using the optical and topological images generated from the NSOM analysis, the interaction could be observed at the nanoscopic scale. This study demonstrates that the NSOM is a powerful tool for the detection of protein interactions at the nanoscopic level when the protein is conjugated with AuNPs. 相似文献
17.
H. Kawashima M. Furuki† ‡ S. Tatsuura† M. Tian‡ Y. Sato‡ L. S. Pu‡ & T. Tani§ 《Journal of microscopy》2001,202(1):241-243
A near-field scanning optical microscope has been combined with a two-colour time-resolved pump-probe measurement system. It has a noise-equivalent transmittance change of 5.0 × 10−5 for a probe pulse with an intensity of 30 nW. The system has been used for evaluating molecular thin films that have a domain structure, particularly for observing a gate action of the single domains. The results include key features to understand an origin of the domains and suggest that the film composition is uniform over a distance of several micrometres. 相似文献
18.
Imaging of optical disc using reflection-mode scattering-type scanning near-field optical microscopy
M. Yamaguchi Y. Sasaki H. Sasaki T. Konada Y. Horikawa A. Ebina T. Umezawa & T. Horiguchi 《Journal of microscopy》1999,194(2-3):552-557
A phase-change optical disc was observed using a reflection-mode scattering-type scanning near-field optical microscope (RS-SNOM). In an a.c.-mode SNOM image, the 1.2 μm × 0.6 μm recording marks were successfully observed although the data were recorded on the groove. In contrast, no recording marks could be resolved in a d.c.-mode SNOM image. These results are in good agreement with those from a numerical simulation using the finite difference time domain method. The resolution was better than 100 nm with a.c.-mode SNOM operation and the results indicate that recording marks in phase-change optical media can be directly observed with the RS-SNOM. 相似文献
19.
A near-field scanning optical microscope system was implemented and adapted for nanoscale steady-state fluorescence anisotropy measurement. The system as implemented can resolve 0.1 cP microviscosity variations with a resolution of 250 nm laterally in the near field, or 10 μm when employed in a vertical scanning mode. The system was initially used to investigate the extent of microviscous vicinal water over surfaces of varying hydrophilicity. Water above a cleaved mica surface was found to have a decreased microviscosity, while water above a hydrophobic surface showed no change (detection limit 0.1 cP at 30+ nm from the surface). 相似文献
20.
H. U. DANZEBRINK 《Journal of microscopy》1994,176(3):276-280
A brief explanation of the optoelectronic probe concept and a comparison between the implementation of passive waveguide probes and optoelectronic probes in scanning near-field optical microscopy (SNOM) is presented. The first probe realizations using cleaved semiconductor crystals and the work at present in progress using microfabricated Si pyramids are described. These crystals with evaporated metal electrodes forming a slit aperture with subwave-length dimensions work as metal–semiconductor–metal photodetectors. Their optical detection behaviour is investigated by measuring the intensity distribution of a laser focal point. Measurements where the external bias voltage is changed show that it is possible to modify the detection behaviour of the device because of the varying depletion widths. The last part of the article describes a concept where pyramidal probes should function simultaneously as sensors for scanning force microscopy (SFM) to measure topography and as optoelectronic probes for scanning near-field optoelectronic microscopy (SNOEM). 相似文献