首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
无磁不锈钢     
无磁不锈钢丝“NASNM 15N” 当前对于不锈钢丝的需求日益多样化 ,特别是在最近以信息产业为首的工业生产中要求使用无磁性壳体的需求不断增加 ,即使在服装业中 ,为了检验出残留断针用的检针器 ,要求对于磁场的变化具有高度的灵敏性 ,为此 ,作为零部件和服饰品所使用的金属材料 ,就必须是高度无磁性的 ,为了满足这样的需求形势 ,日本精线公司开发成功了一种高度无磁性的不锈钢丝“NASNM 15N” ,这种无磁不锈钢丝属于奥氏体不锈钢系 ,即使经过很高变形率的冷加工之后其磁导率也保持极低的水平 ,即仍具有良好的无磁性。“NASNM 15N”…  相似文献   

2.
介绍了某钢厂开发高强度无磁不锈钢A钢、B钢两个牌号材料设计的一些基本原则,探讨了材料变形程度对合金抗磁性能和力学性能的影响。并已开发出具有高强度和低导磁率的新线材,取得了可观的经济效益。  相似文献   

3.
《金属功能材料》2010,17(2):25-25
美国ATI Allegheny Ludlum钢铁公司新近推出一种新型双相不锈钢“ATI2003”,其标称化学成分含Cr20%、Ni3%、Mo1.7%和N 0.17%,显微组织大致含有相同份额的奥氏体相和铁素体相,其成分和显微组织为其提供了优于高镍奥氏体不锈钢(316或317)的抗应力腐蚀破裂性,较之普通奥氏体不锈钢高1倍以上的屈服强度。由于这一不锈钢不会析出象σ相之类的有害相,  相似文献   

4.
耐海水无磁不锈钢的研究   总被引:3,自引:0,他引:3  
针对水下构件的使用状况以及考虑到耐蚀性能和无磁性能的要求,设计了耐海水无磁不锈钢(ONMS)的化学成分,对试验钢在力学性能,金相组织,磁导率,均匀腐蚀,缝隙腐蚀,点蚀电位,海水挂片试验等方面作了测试,对试验结果进行讨论。结果表明该试验钢(ONMS)具有良好的综合性能。  相似文献   

5.
6.
高氮无镍奥氏体不锈钢比传统镍奥氏体不锈钢具有更优良的力学性能及明显的成本优势,并且避免了镍过敏问题,是金属生物材料的研究热点之一.本文阐述了高氮无镍奥氏体不锈钢的成分设计思路,分析了合金元素和生产工艺对氯溶解度的影响,介绍了氮气加压熔炼法和粉末冶金法两类高氮不锈钢制备技术的原理及特点,讨论了高氯无镍不锈钢的力学性能、耐蚀性能和生物相容性,对国内外高氮无镍奥氏体不锈钢的开发应用现状及存在的问题进行了深入分析,并指明了高氮无镍奥氏体不锈钢的发展趋势.  相似文献   

7.
高强度不锈钢的研究及发展现状   总被引:1,自引:0,他引:1  
高强度不锈钢作为强度、韧性及服役安全性俱佳的金属结构材料,广泛应用于航空、航天及海洋工程等领域。本文系统地梳理了高强度不锈钢的研究及发展历程,重点阐述了以析出强化和奥氏体韧化为代表的强韧化机理,及以氢致开裂和H原子扩散富集为主要因素的应力腐蚀及氢脆敏感性问题。认为高强度不锈钢的未来发展将重点关注计算模拟设计,多类型、高共格度析出相复合强化,高机械稳定性的薄膜状奥氏体韧化,综合显微组织和服役环境加深对应力腐蚀及氢脆机理的理解,从而为设计兼备超高强韧性、优良综合服役性能的高强不锈钢提供实际的理论依据。  相似文献   

8.
采用粉末注射成形工艺制备了无镍高氮奥氏体不锈钢(0Cr17Mn11Mo3N),研究了喂料的流变行为,注射工艺及烧结工艺.结果表明:64 vol%气雾化0Cr17Mn11Mo3粉末与适量的粘结剂(65 wt%石蜡+30 wt%高密度聚乙烯+5 wt%硬脂酸)混合后的喂料具有较好的流变性能;最佳注射工艺参数为注射压力75~95 MPa,相应的注射温度为160~170℃;提高烧结温度有利于提高烧结体的密度,但是对提高氮含量不利,而增加烧结氮气氛压力可以获得较高的氮含量,但是不利于提高烧结体密度,最佳的烧结工艺为0.1 MPa氮气压力下1300℃烧结2 h,此时烧结体相对密度町以达到99%,氮含量可达到0.78%.  相似文献   

9.
通过盐雾试验、海水浸泡试验、实际海域挂片试验及应力腐蚀试验结合表面形貌观察和显微组织分析,研究了新型无磁高强度A10不锈钢及其对比材料917钢的耐海水腐蚀性能。结果表明:A10不锈钢在海水中全面腐蚀速率低,腐蚀试样表面光亮、无锈、无点腐蚀、无裂纹;而在相同条件下,917钢锈蚀严重。A10不锈钢在海水中的耐蚀性远优于917钢的,且具有优良的抗应力腐蚀开裂性能。  相似文献   

10.
高能球磨和冷压烧结制备Cr-Mn-Mo-N无镍不锈钢   总被引:1,自引:0,他引:1  
采用高能球磨结合高温渗氮方法制备了Cr18Mn12Mo3N无镍高氮不锈钢粉末,随后利用冷压烧结工艺获得了无镍高氮奥氏体不锈钢材料。结果表明:制备的高氮复合粉末近球形,具有良好的成形性;Cr18Mn12Mo3N不锈钢的最佳烧结温度为1250℃,相对密度达到97.1%,氮含量为0.79%(质量分数);经过1150℃固溶处理水冷后能获得完全奥氏体组织,其钝化电位范围宽,点蚀电位高,抗点蚀性能显著优于316L不锈钢。  相似文献   

11.
12.
通过Thermal-Calc热力学软件对0Cr14Mn21NiN无磁不锈钢中碳化物析出的平衡相区进行了计算,并通过时效处理试验进行了验证。通过不同参数的等温变形试验对实际的非平衡态碳化物析出行为进行了研究。通过双环电化学动电位再活化法(DL-EPR)对等温变形试样的晶间腐蚀敏感性进行了测试和对比。结果表明:热力学计算的平衡态Cr23C6碳化物析出温度范围为512~847 ℃,而通过时效试验验证的实际析出温度范围为720~940 ℃,表明二者之间存在约200 ℃的误差。当总变形量不超过20%时,等温变形非平衡态Cr23C6碳化物析出下限温度进一步降低至625 ℃,等温变形过程对晶界Cr23C6碳化物形核和长大过程均有加速作用。DL-EPR电化学方法结果表明等温变形后由于碳化物析出速度的加快,0Cr14Mn21NiN无磁不锈钢的晶间腐蚀敏感性显著增加。  相似文献   

13.
采用Gleeble-2000热模拟试验机对无磁钻铤用0Cr19Mn21Ni2N高氮奥氏体不锈钢进行高温拉伸试验,用扫描电镜和能谱仪对拉伸试样断口及断口附近的组织进行分析,用Thermo-Calc软件计算试验钢的相变及析出相,研究了0Cr19Mn21Ni2N高氮奥氏体不锈钢的高温塑性变形行为。结果表明,试验钢的第Ⅰ脆性区>1150 ℃,第Ⅲ脆性区为800~950 ℃,未出现第Ⅱ脆性区。第Ⅰ脆性区的出现主要是在加热过程中试验钢由奥氏体向δ铁素体转变引起的,第Ⅲ脆性区的出现是因为M2(C, N)析出相及Al2O3夹杂物引起的。试验钢的高温抗拉强度随温度升高而逐渐降低,断面收缩率在1000~1150 ℃温度范围内表现出极佳的热塑性,温度超过1150 ℃后断面收缩率逐渐下降,因此0Cr19Mn21Ni2N高氮奥氏体不锈钢的热锻温度应选择在1000~1150 ℃之间,在此温度范围内断面收缩率均在73%以上,并且可以避开第Ⅰ与第Ⅲ脆性区。  相似文献   

14.
为解决高镍奥氏体无磁辊材料X5NiCrTi2615MoAlVB在以往热处理工艺下硬度不高等问题,通过分析X5NiCrTi2615MoAlVB的成分,研究合金元素在材料中的作用,并利用Jamatpr05.0软件进行相图计算,从而设计并试验得到适合该材料的最佳热处理工艺为:1000℃×2h固溶后水冷+760℃×12 h时效后空冷,最终有效地改善了高镍奥氏体无磁辊材料组织和性能.  相似文献   

15.
为了探索高氮无镍奥氏体不锈钢激光焊接的可行性,采用1. 0、1. 5和2. 0 k W功率的激光对含0. 092%C、0. 59%N、17. 69%Cr、13. 83%Mn和2. 89%Mo(质量分数)的不锈钢试样进行了辐照。对辐照区的熔池、熔合区、热影响区进行了金相检验、背散射电子衍射(EBSD)和硬度测定。结果表明:高氮无镍奥氏体不锈钢熔池呈上宽下窄的形状;用1和2 kW激光辐照的钢熔池的最大深度分别为2. 7和3. 9 mm。以不同功率激光辐照的钢,熔池区的硬度最低,为320 HV0. 2左右,热影响区内再结晶区硬度最高,为350 HV0. 2左右,熔合区硬度居于二者之间。此外,熔池内有大量的亚晶,其取向差约为2°~5°。  相似文献   

16.
采用动电位极化曲线、电化学阻抗谱、X射线光电子能谱等研究了固溶处理(固溶温度范围为800~1200℃,保温时间为1 h)对06Cr23Mn22MoN高氮无镍奥氏体不锈钢耐腐蚀性能的影响。结果表明:高氮无镍奥氏体不锈钢耐腐蚀性能主要受第二相、钝化膜及晶粒尺寸的影响;固溶温度由800℃升高到1100℃,随着Cr_2N的逐渐消除,实验钢的耐腐蚀性能逐渐改善;在固溶温度为1100℃时,Cr_2N向表面富集反应生成NH_4~+和NH_3并吸附在钝化膜表面,提高了钝化膜的稳定性,实验钢的耐腐蚀性能最好;当固溶温度高于1100℃时,晶粒长大会降低表面原子活性,形成钝化膜的速度减慢,导致实验钢的耐腐蚀性能降低。  相似文献   

17.
高氮无镍奥氏体不锈钢耐蚀性的研究   总被引:1,自引:0,他引:1  
以常压下冶炼的高氮无镍奥氏体不锈钢为材料,经1150℃强烈塑性变形,轧制成2 mm厚的板材,将热轧后的板材进行1100℃、保温10 h、水淬的固溶处理。通过酸浸试验、极化曲线测试和盐雾腐蚀试验,并与1Cr18N i9Ti钢的耐蚀性进行比较。结果表明,冶炼高氮无镍奥氏体不锈钢具有优异的耐腐蚀性能。  相似文献   

18.
日本大同特殊钢公司电子器件部开发出“HS14”,已经生产出制品。在1MHz频率下的比磁导率为140,适用频率范围为10MHz~3GHz,制品标准厚度为0.05~O.5mm,最高使用温度为105℃,难燃性相当于UL94标准中的VO级。HSl4制成的屏蔽板氯素、卤素含量都低于900ppm,总含量低于1500ppm,属于环境友好型材料。  相似文献   

19.
借助Thermo-Calc软件对无磁钻铤用Fe-(15~25)Cr-(15~25)Mn-(0~5)Ni-(0~1)Mo-(0~1)N-(0~0.8)C多元系高氮钢在凝固和冷却过程中的相变及析出行为进行研究。使用Thermo-Calc软件中的TCFE9数据库对该钢相图的垂直截面图进行计算,分析了Cr、Mn、Ni、Mo、N及C元素对无磁钻铤用高氮钢凝固及冷却过程中相变的影响,并得到了平衡凝固相变路径图。结果表明,增加Cr、Mn含量可显著提高合金中氮的溶解度,Mo元素可以微弱提高氮的溶解度,Ni、C元素显著降低氮的溶解度。Ni、C和N含量提高可扩大单相奥氏体相区,具有稳定奥氏体的作用,Cr、Mo与Mn元素缩小单相奥氏体相区,具有稳定铁素体的作用。N元素可以促进M2(C,N)相析出,使M23C6相析出受到抑制。Cr、Mn元素可以促进Sigma相析出,C、N元素抑制Sigma相析出。M23C6相的析出主要受C含量的影响,随着C含量的升高,M23C6相的析出温度显著升高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号