首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 521 毫秒
1.
Inhibition of conceptal biosynthesis of all-trans-retinoic acid (t-RA) by aldehydes generated from lipid peroxidation was investigated. Oxidative conversion of all-trans-retinal (t-RAL, 18 microM) to t-RA catalyzed by rat conceptal cytosol (RCC) was sensitive to inhibition by trans-2-nonenal (tNE), nonyl aldehyde (NA), 4-hydroxy-2-nonenal (4HNE), and hexanal. With an initial molar ratio of aldehyde/t-RAL of 2:1, tNE, NA, and 4HNE caused 70, 65, and 40% reductions of t-RA synthesis, respectively. Hexanal reduced generation of t-RA by approximately 50% as the ratio of aldehyde/t-RAL was raised to 20:1. tNE significantly increased the Km of the reaction and kinetic analyses indicated a mixed competitive/noncompetitive inhibition. By contrast, analogous reactions catalyzed by adult rat hepatic cytosol (ARHC) were highly resistant to inhibition by the same aldehydes. Significant inhibition (> 40% reduction of t-RA generation) by 4HNE, NA, and tNE were achieved at high molar ratios of aldehyde/t-RAL (> 175:1). Hexanal did not inhibit the reaction significantly even at very high ratios of aldehyde/t-RAL (> 2,000:1). Interestingly, when reduced glutathione (GSH, 10 mM) alone or GSH plus glutathione S-transferase (GST) were added to RCC-catalyzed reactions, additions of tNE or 4HNE showed either no significant inhibition or a partial lack of inhibition. Results suggested that GSH-dependent conjugation with 4HNE proceeded slowly compared to conjugation with tNE. To test the hypothesis that GST-catalyzed GSH conjugation can effectively prevent inhibition of t-RA synthesis by aldehydic products of lipid peroxidation, triethyltin bromide (TEB, a potent inhibitor of GST, 20 microM) was added to ARHC-catalyzed reactions when hexanal or tNE were present in the incubations. Eighty and 60% of hexanal and tNE inhibition, respectively, were observed. This was apparently due to TEB blockage of GST-catalyzed GSH conjugation reactions and thus strongly supported the stated hypothesis.  相似文献   

2.
The cytologically active secondary lipid peroxidation products, malondialdehyde (MDA) and 4-hydroxy-2-nonenal (HNE) have been detected as their 2,4-dinitrophenylhydrazone (DNP) derivatives in plant tissue cultures using LC-MS. This paper reports, for the first time, the use of LC-MS methodology to definitively identify 4-hydroxy-2-nonenal in plants. Limits of detection for the two derivatives are approximately 5 pmol (1.2 x 10(-9) g; 1 microM) and 0.1 pmol (3 x 10(-11) g; 20 nM) respectively. Mass spectrometer response was linear in the range from 2-200 microM DNP-MDA and 0.02-10 microM DNP-HNE. This methodology has been used to assess the formation of aldehydic secondary lipid peroxidation products in dedifferentiated callus cultures of Daucus carota. The finding that profiles of MDA and HNE can be correlated with embryogenic competence is of considerable interest as oxidative status has already been implicated as a regulatory factor in animal development.  相似文献   

3.
Aldose reductase (AR) is a member of the aldo-keto reductase superfamily. Due to its ability to catalyze the formation of sorbitol from glucose during hyperglycemic and hypertonic stress, the aldose-reducing property of AR has been accepted as its main physiological and pathological function. Nonetheless, AR is a poor catalyst for glucose reduction and displays active-site properties unexpected of a carbohydrate-binding protein. We, therefore, examined the catalytic properties of AR with a series of naturally occurring aldehydes, compatible in their hydrophobicity to the large apolar active site of the enzyme. Our results show that recombinant human AR is an efficient catalyst for the reduction of medium- to long-chain unbranched saturated and unsaturated aldehydes. The enzyme displayed selective preference for saturated aldehydes, such as hexanal, and unsaturated aldehydes, such as trans-2-octenal and nonenal as well as their 4-hydroxy derivatives. Short-chain aldehydes such as propanal and acrolein were reduced less efficiently. Branched derivatives of acrolein or its glutathione conjugate (GS-propanal) were, however, reduced with high efficiency. In the absence of NADPH, the alpha, beta unsaturated aldehydes caused covalent modification of the enzyme. On the basis of electrospray mass spectrometric analysis of the wild-type and site-directed mutants of AR (in which the solvent exposed cysteines were individually replaced with serine), the site of modification was identified to be the active-site residue, Cys 298. The unsaturated aldehydes, however, did not modify the enzyme bound to NADPH and did not inactivate the enzyme during catalysis. Modeling studies indicate that the large hydrophobic active site of AR can accommodate a large number of aldehydes without changes in the structure of the binding site or movement of side chains. High hydrophobicity due to long alkyl chains or apolar substituents appears to stabilize the interaction of the aldehyde substrates with the enzyme. Apparently, such hydrophobic interactions provide substrate selectivity and catalytic efficiency of the order achievable by hydrogen bonding. Since several of the aldehydes reduced by AR are either environmental and pharmacological pollutants or products of lipid peroxidation, the present studies provide the basis of future investigations on the role of AR in regulating aldehyde metabolism particularly under pathological states associated with oxidative stress and/or aldehyde toxicity.  相似文献   

4.
Hepatoma cells have a below-normal content of polyunsaturated fatty acids; this reduces lipid peroxidation and the production of cytotoxic and cytostatic aldehydes within the cells. In proportion to the degree of deviation, hepatoma cells also show an increase in the activity of Class-3 aldehyde dehydrogenase, an enzyme important in the metabolism of lipid peroxidation products and also in that of several drugs. When hepatoma cells with different degrees of deviation were enriched with arachidonic acid and stimulated to peroxidize by ascorbate/iron sulphate, their growth rate was reduced in proportion to the quantity of aldehydes produced and to the activity of aldehyde dehydrogenase. Therefore, 7777 cells, less deviated and with low Class-3 aldehyde dehydrogenase activity, were more susceptible to lipid peroxidation products than JM2 cells. It is noteworthy that repeated treatments with prooxidant also caused a decrease in mRNA and activity of Class-3 aldehyde dehydrogenase, contributing to the decreased growth and viability. Thus, Class-3 aldehyde dehydrogenase could be considered relevant for the growth of hepatoma cells, since it defends them against cell growth inhibiting aldehydes derived from lipid peroxidation.  相似文献   

5.
Peroxidation of membrane lipids results in release of the aldehyde 4-hydroxynonenal (HNE), which is known to conjugate to specific amino acids of proteins and may alter their function. Because accumulating data indicate that free radicals mediate injury and death of neurons in Alzheimer's disease (AD) and because amyloid beta-peptide (A beta) can promote free radical production, we tested the hypothesis that HNE mediates A beta 25-35-induced disruption of neuronal ion homeostasis and cell death. A beta induced large increases in levels of free and protein-bound HNE in cultured hippocampal cells. HNE was neurotoxic in a time- and concentration-dependent manner, and this toxicity was specific in that other aldehydic lipid peroxidation products were not neurotoxic. HNE impaired Na+, K(+)-ATPase activity and induced an increase of neuronal intracellular free Ca2+ concentration. HNE increased neuronal vulnerability to glutamate toxicity, and HNE toxicity was partially attenuated by NMDA receptor antagonists, suggesting an excitotoxic component to HNE neurotoxicity. Glutathione, which was previously shown to play a key role in HNE metabolism in nonneuronal cells, attenuated the neurotoxicities of both A beta and HNE. The antioxidant propyl gallate protected neurons against A beta toxicity but was less effective in protecting against HNE toxicity. Collectively, the data suggest that HNE mediates A beta-induced oxidative damage to neuronal membrane proteins, which, in turn, leads to disruption of ion homeostasis and cell degeneration.  相似文献   

6.
We have examined the reactions of peroxynitrite with short-chain aliphatic aldehydes to model the reaction of the peroxynitrite anion (ONOO-) with CO2. Aldehydes, like CO2, react rapidly with peroxynitrite and catalyze its decomposition. The pH dependence of the reaction is consistent with the addition of ONOO- (not ONOOH) to the carbonyl carbon atom of the free aldehyde forming a 1-hydroxyalkylperoxynitrite anion adduct (5), which structurally resembles the nitrosoperoxycarbonate adduct (1) formed from the reaction of ONOO- with CO2. Intermediate 5, or the secondary products derived from it, decays to give NO3- and regenerated aldehyde, with small but significant yields of H2O2, organic acids, and organic nitrates. In analogy with the peroxynitrite/CO2 system, it is suggested that 5 undergoes homolytic or heterolytic cleavage at the O-O bond, giving a caged radical pair [RCH(OH)O./ .NO2] (7) or intimate ion pair [RCH(OH)O -/+ NO2] (8). The radicals and ions in intermediates 7 and 8 can recombine within the solvent cage to form 1-hydroxyalkylnitrate [RCH(OH)ONO2] (6), which can then dissociate to give nitrate and regenerate the aldehyde. The aldehyde/ peroxynitrite adducts 5-8 mediate the oxidation of 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) but not the nitration of 4-hydroxyphenylacetate. The significance of these findings is discussed in relation to the mechanism(s) of the CO2-catalyzed isomerization of peroxynitrite to nitrate and biological nitrations involving peroxynitrite/CO2 adducts.  相似文献   

7.
Exposure of rat liver microsomes to ascorbic acid/Fe(2+) caused decreases in the membrane-bound glucose-6-phosphate (G-6-Pase) activity and the protein thiols after a short lag period (4 min). Under the same conditions, the production of thiobarbituric acid-reactive substances and fluorescent products was also initiated from 4 min after the start of the treatment, although conjugated diene was formed immediately on incubation of the microsomes with ascorbic acid/Fe(2+). After centrifugation of the treated microsomes, the fluorescent products and the enzyme activity remained in the membrane fraction. The results of kinetic studies of the enzyme activity indicated that ascorbic acid/Fe(2+)-induced inhibition of the enzyme activity is mainly due to an increased Km value for the substrate. A decreased activity of the microsomal G-6-Pase was also observed when the microsomes were incubated with aldehydes such as malondialdehyde, n-heptaldehyde, acetaldehyde, and trans-2-nonenal. However, loss of protein thiols was detected only upon treatment of the microsomes with trans-2-nonenal. Glucose-6-phosphate (G-6-P)effectively prevented ascorbic acid/Fe(2+)- or trans-2-nonenal-induced inhibition of the enzyme activity, but the substrate failed to protect the protein thiols in both systems. The results of fluorescence anisotropy measurements of diphenylhexatriene-labeled microsomes suggested that changes in the lipid dynamics are not directly related to peroxidation- mediated inhibition of the enzyme activity. Based on these results, a possible reason for the inhibition of the microsomal G-6-Pase activity associated with ascorbic acid/Fe(2+) treatment is discussed.  相似文献   

8.
Pigs were fed a commercial conjugated linoleic acid (CLA) mixture, prepared by alkali isomerization of sunflower oil, at 2% of the basal diet, from 61.5 to 106 kg live weight, and were compared to pigs fed the same basal diet with 2% added sunflower oil. The total lipids from liver, heart, inner back fat, and omental fat of pigs fed the CLA diet were analyzed for the incorporation of CLA isomers into all the tissue lipid classes. A total of 10 lipid classes were isolated by three-directional thin-layer chromatography and analyzed by gas chromatography (GC) on long capillary columns and by silver-ion high-performance liquid chromatography (Ag+-HPLC); cholesterol was determined spectrophotometrically. Only trace amounts (<0.1%; by GC) of the 9,11-18:2 cis/trans and trans,trans isomers were observed in pigs fed the control diet. Ten and twelve CLA isomers in the diet and in pig tissue lipids were separated by GC and Ag+- HPLC, respectively. The relative concentration of all the CLA isomers in the different lipid classes ranged from 1 to 6% of the total fatty acids. The four major cis/trans isomers (18.9% 11 cis,13 trans-18:2; 26.3% 10 trans,12 cis-18:2; 20.4% 9 cis,11 trans-18:2; and 16.1% 8 trans, 10 cis-18:2) constituted 82% of the total CLA isomers in the dietary CLA mixture, and smaller amounts of the corresponding cis,cis (7.4%) and trans,trans (10.1%) isomers were present. The distribution of CLA isomers in inner back fat and in omental fat of the pigs was similar to that found in the diet. The liver triacylglycerols (TAG), free fatty acids (FFA), and cholesteryl esters showed a similar pattern to that found in the diet. The major liver phospholipids showed a marked increase of 9 cis,11 trans-18:2, ranging from 36 to 54%, compared to that present in the diet. However, liver diphosphatidylglycerol (DPG) showed a high incorporation of the 11 cis,13 trans-18:2 isomer (43%). All heart lipid classes, except TAG, showed a high content of 11 cis,13 trans-18:2, which was in marked contrast to results in the liver. The relative proportion of 11 cis,13 trans-18:2 ranged from 30% in the FFA to 77% in DPG. The second major isomer in all heart lipids was 9 cis,11 trans-18:2. In both liver and heart lipids the relative proportions of both 10 trans,12 cis-18:2 and 8 trans, 10 cis-18:2 were significantly lower compared to that found in the diet. The FFA in liver and heart showed the highest content of trans,trans isomers (31 to 36%) among all the lipid classes. The preferential accumulation of the 11 cis,13 trans-18:2 into cardiac lipids, and in particular the major phospholipid in the inner mitochondrial membrane, DPG, in both heart and liver, appears unique and may be of concern. The levels of 11 cis,13 trans-18:2 naturally found in foods have not been established.  相似文献   

9.
For the first time it was demonstrated that 4-hydroxynonenal (HNE) is formed by the myocardium. 1 to 2 pmol HNE/min/mg protein were released from isolated perfused hearts of 18-month-old WKY rats during a normoxic period of perfusion. During the first minutes of reperfusion following 30 min of ischaemia, the mean value of HNE release increased in comparison to pre-ischaemic HNE release (pre-ischaemic control). However, the alterations were significant only in the second minute of reperfusion. HNE liberation significantly intensified during the early reperfusion period of hearts of 18-month-old spontaneously hypertensive rats (SHR, with cardiac hypertrophy and congestive heart failure) in comparison with the pre-ischaemic control period. Furthermore, HNE liberation from those hearts was higher than from hearts of normotensive control animals (WKY rats). Maximum quantities were observed 2 min after ischaemia, with 6 to 10 pmol HNE/min/mg protein. The results suggest that the formation of chemotactic products of radical-induced lipid peroxidation, such as HNE, is markedly increased in reperfused hypertrophic and failing myocardium, and emphasize the role of HNE as a possible chemotactic agent during postischaemic reoxygenation.  相似文献   

10.
Analysis of the fatty acids of total and neutral lipids, glycolipids, phospholipids and gangliosides of buffalo spermatozoa and seminal plasma showed that there were high levels of polyunsaturated acids. Neutral lipids were the richest in polyunsaturated acids (55% in spermatozoa and 61% in seminal plasma). The major saturated acid of all the principal classes was stearic acid and the major unsaturated acid was docosahexaenoic acid (22:6omega3) except in the neutral lipids in which it was arachidonic acid (20:4omega6). The major aldehyde was palmitaldehyde (16:0) in buffalo sperm lipids and docosanal (22:0) in seminal plasma. More than 50% of the total aldehydes was contributed by aldehydes with a chain length greater than 18 carbon atoms.  相似文献   

11.
4-Hydroxynonenal, an aldehyde produced from lipid peroxidation of cellular membranes, inhibits growth and induces differentiation of HL-60 human leukemic cell line. Since it is highly unstable in the culture medium, its effectiveness is increased when added repeatedly to the cell suspension. We have previously demonstrated that HNE inhibits c-myc but not N-ras expression in HL-60 cells. Here we investigate its effect on the expression of c-myb and c-fos, two early genes involved in the induction of myeloid and monocytic differentiation. Moreover, since c-fos is directly correlated with the intracellular level of cAMP, we also analysed the cAMP concentration after aldehyde treatment. HNE significantly inhibits c-myb expression during and after repeated treatments. A single administration of 1 microM HNE decreases c-myb mRNA at 1 hour whereas 10 microM HNE inhibits c-myb expression from 3 to 6 hours after treatment, and then the expression returns to the control level. By contrast, c-fos expression and intracellular cAMP concentration do not show any significant change after HNE treatments.  相似文献   

12.
Lipid peroxidation results in the formation of conjugated dienes, lipid hydroperoxides and degradation products such as alkanes, aldehydes and isoprostanes. The approach to the quantitative assessment of lipid peroxidation depends on whether the samples involve complex biological material obtained in vivo, or whether the samples involve relatively simple mixtures obtained in vitro. Samples obtained in vivo contain a large number of products which themselves may undergo metabolism. The measurement of conjugated diene formation is generally applied as a dynamic quantitation e.g. during the oxidation of LDL, and is not generally applied to samples obtained in vivo. Lipid hydroperoxides readily decompose, but can be measured directly and indirectly by a variety of techniques. The measurement of MDA by the TBAR assay is non-specific, and is generally poor when applied to biological samples. More recent assays based on the measurement of MDA or HNE-lysine adducts are likely to be more applicable to biological samples, since adducts of these reactive aldehydes are relatively stable. The discovery of the isoprostanes as lipid peroxidation products which can be measured by gas chromatography mass spectrometry or immunoassay has opened a new avenue by which to quantify lipid peroxidation in vivo, and will be discussed in detail.  相似文献   

13.
In order to investigate specific DNA damage caused by nitric oxide (NO) induced lipid peroxidation, levels of promutagenic etheno adducts 1,N6-ethenodeoxyadenosine (epsilondA) and 3,N4-ethenodeoxycytidine (epsilondC) were measured in spleen DNA of SJL mice induced to produce high levels of NO by injection of RcsX (pre-B-cell lymphoma) cells. epsilondA and epsilondC levels were quantified by an ultrasensitive immunoaffinity-32P-post-labeling method. Spleen DNA of control mice (n = 5) had background levels of 9.2+/-5.4 epsilondA adducts per 10(9) dA and 13.1+/-5.7 epsilondC adducts per 10(9) dC. In RcsX cell-injected mice (n = 7), levels of these adducts were elevated approximately 6-fold, i.e. 53.9+/-39.4 epsilondA per 10(9) dA and 83.5+/-57.8 epsilondC per 10(9) dC (P < 0.05). Mice injected with RcsX cells and also treated with NG-methyl-L-arginine (NMA), an inhibitor of inducible nitric oxide synthase (n = 6), had significantly reduced levels (P < 0.05) of both epsilondA and epsilondC (13.5+/-5.7 epsilondA per 10(9) dA and 28.2+/-15.7 epsilondC per 10(9) dC). These findings constitute the first available evidence of formation of etheno adducts associated with NO overproduction in vivo. The adducts were presumably formed from lipid peroxidation products such as trans-4-hydroxy-2-nonenal (HNE), generated via oxidation of lipids by peroxynitrite. The results suggest that etheno-DNA adducts, among other types of damage, may contribute to the etiology of cancers associated with chronic infection/inflammation in which NO is overproduced.  相似文献   

14.
2,3-Epoxy-4-hydroxynonanal (EH) is a bifunctional aldehyde formed by epoxidation of trans-4-hydroxy-2-nonenal, a peroxidation product of omega-6 polyunsaturated fatty acids. EH is mutagenic and tumorigenic and capable of modifying DNA bases forming etheno adducts in vitro. Recent studies showed that etheno adducts are present in tissue DNA of humans and untreated rodents, suggesting a potential endogenous role of EH in their formation. A sensitive assay is needed so we can determine whether EH is involved in etheno adduct formation in vivo and study the biological significance of the etheno adducts in DNA. In this study, we developed a gas chromatography/negative ion chemical ionization/mass spectrometry assay for the analysis of 1, N6-ethenoadenine (epsilonAde) and 7-(1', 2'-dihydroxyheptyl)-3H-imidazo[2,1-i]purine (DHH-epsilonAde) in DNA; both are products from the reaction of adenine with EH. The assay entails the following sequence of steps: (1) addition of [15N5]epsilonAde and [15N5]DHH-epsilonAde to DNA as internal standards, (2) acid hydrolysis of DNA, (3) adduct enrichment by C18 solid phase extraction (SPE), (4) derivatization by pentafluorobenzylation (PFB), (5) separation of PFB-epsilonAde and PFB-DHH-epsilonAde on a Si SPE column, (6) acetonide (ACT) formation of PFB-DHH-epsilonAde, and (7) GC/MS analysis with selective ion monitoring (SIM). The limit of detection by on-column injection for PFB-epsilonAde monitoring of the (M - PFB)- ion at m/z 158 was 30 amol and for ACT-PFB-DHH-epsilonAde monitoring of the (M - PFB)- ion at m/z 328 was 0.4 fmol; the detection limits for the entire assay were 6.3 fmol for epsilonAde and 36 fmol for DHH-epsilonAde. In calf thymus DNA modified with EH at 37 degreesC for 50 h, both epsilonAde and DHH-epsilonAde were detected at high levels by this method, 4.5 +/- 0.7 and 90.8 +/- 8.7 adducts/10(3) adenine, respectively. These levels were also verified by HPLC fluorescence analysis, indicating that EH extensively reacts with adenine in DNA, forming etheno adducts. The high sensitivity of the assay suggests that it may be used in the analysis of ethenoadenine adducts in vivo.  相似文献   

15.
Aging and the progression of certain degenerative diseases are accompanied by increases in intracellular fluorescent material, termed "lipofuscin" and ceroid, respectively. These pigments are observed within granules composed, in part, of damaged protein and lipid. Modification of various biomolecules by aldehyde products of lipid peroxidation is believed to contribute to lipofuscin and ceroid formation. However, little direct evidence currently exists because the structures responsible for the fluorescent, cross-linked nature of this material are not well characterized. In this study, we have identified a fluorescent product formed in the reaction of Nalpha-acetyllysine and 4-hydroxy-2-nonenal (HNE), a major product of lipid peroxidation and the most reactive of these compounds under physiological conditions [Esterbauer, H., Shaur, R. J. & Zollner, H. (1991) Free Radical Biol. Med. 11, 81-128]. This fluorescent compound, characterized as a 2-hydroxy-3-imino-1,2-dihydropyrrol derivative, appears to form upon oxidative cyclization of the nonfluorescent 2:1 lysine-HNE Michael adduct-Schiff base cross-link. Polyclonal antibody was raised to the Nalpha-acetyllysine-HNE fluorophore and found to be highly specific to the chromophore structure of the compound. This antibody has been used to conclusively demonstrate that the lysine-HNE derivative of this fluorophore forms on protein upon exposure to HNE. The results of this study therefore provide the basis for future investigations on the contribution(s) of HNE-derived fluorophore formation to lipofuscin and ceroid accumulation.  相似文献   

16.
The effects of hypochlorite (HOCl/OCl-) on the content of carotenoids (trans-lycopene, 5-cis-lycopene, alpha- and beta-carotene) and oxycarotenoids (lutein, zeaxanthin, trans- and cis-2',3'-anhydrolutein, alpha-and beta-cryptoxanthin) in human blood low-density lipoproteins (LDL) were compared using HPLC. Hypochlorite decreased the content of all the above-mentioned pigments in LDL. However, it was more reactive towards carotenoids rather than to their oxy derivatives. The ability of carotenoids and oxycarotenoids to scavenge HOCl/OCl- decreases in the series: trans-lycopene approximately 5-lycopene > alpha-carotene > beta-carotene > zeaxanthin > alpha-cryptoxanthin > cis-2',3'-anhydrolutein > beta-cryptoxanthin > trans-2',3'-anhydrolutein > lutein. Preincubation of LDL with hypochlorite decreased their resistance to CU(2+)-induced accumulation of dienic conjugates that are produced in the course of lipid peroxidation. The data suggest that hypochlorite-induced destruction of carotenoids in LDL decreases their resistance to oxidative modification, thus promoting the development of early stages of atherosclerosis.  相似文献   

17.
18.
Nitric oxide (NO) is a free radical produced enzymatically in biological systems from the guanidino group of L-arginine. Its large spectrum of biological effects is achieved through chemical interactions with different targets including oxygen (O2), superoxide (O2o-) and other oxygen reactive species (ROS), transition metals and thiols. Superoxide anions and other ROS have been reported to react with NO to produce peroxynitrite anions that can decompose to form nitrogen dioxide (NO2) and hydroxyl radial (OHo). Thus, NO has been reported to have a dual effect on lipid peroxidation (prooxidant via the peroxynitrite or antioxydant via the chelation of ROS). In the present study we have investigated in different models the in vitro and in vivo action of NO on lipid peroxidation. Copper-induced LDL oxidation were used as an in vitro model. Human LDL (100 micrograms ApoB/ml) were incubated in oxygene-saturated PBS buffer in presence or absence of Cu2+ (2.5 microM) with increasing concentrations of NO donnors (sodium nitroprussiate or nitroso-glutathione). LDL oxidation was monitored continuously for conjugated diene formation (234 nm) and 4-hydroxynonenal (HNE) accumulation. Exogenous NO prevents in a dose dependent manner the progress of copper-induced oxidation. Ischaemia-reperfusion injury (I/R), characterized by an overproduction of ROS, is used as an in vivo model. Anaesthetized rats were submitted to 1 hour renal ischaemia following by 2 hours of reperfusion. Sham-operated rats (SOP) were used as control. Lipid peroxidation was evaluated by measuring the HNE accumulated in rats kidneys in presence or absence of L-arginine or D-arginine infusion. L-arginine, but not D-arginine, enhances HNE accumulation in I/R but not in SOP (< 0.050 pmol/g tissue in SOP versus 0.6 nmol/g tissue in I/R), showing that, in this experimental conditions, NO produced from L-arginine, enhances the toxicity of ROS. This study shows that the pro- or antioxydant effects of NO are different in vivo and in vitro and could be driven by environmental conditions such as pH, relative concentrations of NO and ROS, ferryl species.  相似文献   

19.
Apolipoprotein E (APOE) genotype and advancing aging are interacting ri sk factors in the expression of late onset and sporadic Alzheimer's Disease (AD). We tested the hypothesis that 2 products of lipid peroxidation, malondialdehyde (MDA) and 4 hydroxy-2-nonenal (HNE), covalently modify APOE and alter its metabolism. In vitro, both HNE and MDA crosslinked purified APOE3 and APOE4. HNE was a more potent crosslinker than MDA, and purified APO3 was more susceptible to crosslinking by HNE than was purified APOE4. In P19 neuroglial cultures, oxidative stress with lipid peroxidation led to increased intracellular accumulation of anti-HNE and anti-APOE immunoreactive proteins of approximately 50 kDa. Intercellular accumulation of the 50 kDa APOE-immunoreactive protein (APOE-50) was not prevented by cyclohexamide, suggesting formation by post-translational mechanisms. In CSF, a 50 kDa APOE-immunoreactive protein co-migrated with proteins most immunoreactive for HNE and MDA adducts, containing NaB3H4-reducible bonds. These proteins were in CSF from adult subjects (with or without dementia), and in AD patients homozygous for APOE3 or APOE4 alleles. These data suggest that HNE covalently crosslinks APOE in P19 neuroglial cultures to form a 50 kDa protein, and that similar modifications of APOE appear to occur in vivo.  相似文献   

20.
We have recently demonstrated that neutrophils oxidize nearly all of the amino acids commonly found in plasma to a corresponding family of aldehydes in high yield. The reaction is mediated by hypochlorous acid (HOCl), the major oxidant generated by the myeloperoxidase-H2O2-Cl- system of phagocytes. We now present evidence for the underlying mechanism of this reaction, including the structural requirements and reaction intermediates formed. Utilizing mass spectrometry and isotopically labeled amino acids, we rule out hydrogen atom abstraction from the alpha-carbon as the initial event in aldehyde formation during amino acid oxidation, a pathway known to occur with ionizing radiation. Aldehyde generation from amino acids required the presence of an alpha-amino moiety; beta- and epsilon-amino acids did not form aldehydes upon oxidation by either the myeloperoxidase system or HOCl, generating stable monochloramines instead. UV difference spectroscopy, high pressure liquid chromatography, and multinuclear (1H,15N) NMR spectroscopy established that the conversion of alpha-amino acids into aldehydes begins with generation of an unstable alpha-monochloramine, which subsequently decomposes to yield an aldehyde. Precursor product relationships between alpha-amino acid and alpha-monochloramine, and alpha-monochloramine and aldehyde were confirmed by high pressure liquid chromatography purification of the reaction intermediate and subsequent 1H and 15N NMR spectroscopy. Collectively, these results detail the chemical mechanism and reaction intermediates generated during conversion of amino acids into aldehydes by myeloperoxidase-generated HOCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号