首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method which can nondestructively measure the surface-state density (SSD) Ds and estimate the capture cross-sections (CCS) of surface state σ0n and σp on surface of p-type semiconductor crystals is proposed. This method is based on the photovoltage measurements at various temperatures. The photovoltage experiment was carried out with a (1 1 1) p-type Si single crystal (NA=4.8×1014 cm −3). Owing to that the surface barrier height φBP=0.6421 V and the surface-recombination velocity sn=9.6×103 cm s−1 of this sample can be determined, the SSD Ds=1.2×1011 cm−2 eV−1 can therefore be obtained, furthermore CCS σ0n≈5×10−14 cm2 and σp≈2×10−10 cm2 can also be estimated. These results are consistent with that of related reports obtained by other methods.  相似文献   

2.
Cobalt disilicide (CoSi2) ohmic contacts possessing low specific contact resistivity (c < 3.0 ± 0.4 × 10−5 ωcm2) to n-type 6H---SiC are reported. The contacts were fabricated via sequential electron-beam evaporation of Co and Si layers followed by a two-step vacuum anealing process at 500 and 900°C. Stochiometry of the contact so formed was confirmed by Rutherford backscattering spectrometry and X-ray diffraction. Specific contact resistivities were obtained via current-voltage (I-V) analysis at temperatures ranging from 25 to 500°C. c is compared as a function of carrier concentration, current density, temperature and time at elevated temperature.  相似文献   

3.
Mo, Pt, Pt/Mo and Pt/Ti thin films have been deposited onto Si and SiO2 substrates by RF sputtering and annealed in the YBa2Cu3O7−δ (YBCO) growth conditions. The effect of annealing on the sheet resistance of unpatterned layers was measured. A Pt-based multilayered metallization for the PMOS devices was proposed and tested for a compatible monolithic integration of semiconducting devices and YBCO sensors on the same silicon substrate. The best results were obtained with a Pt/Ti/Mo-silicide structure showing 0.472 Ω interconnect sheet resistivity and 2×10−4 Ω cm2 specific contact resistivity after annealing for 60 min at 700 °C in 0.5 mbar O2 pressure.  相似文献   

4.
Hydrogen as 2H was incorporated into ScAlMgO4 by both ion implantation and by exposure to a plasma at 250°C. In the implanted material diffusion begins at 500°C and most of the hydrogen is lost by ≤ 750°C. This thermal stability for hydrogen retention is considerably lower than for other substrate materials for GaN epilayer growth, such as Al2O3 and SiC. There is minimal permeation of 2H from a plasma at 250°C (DH ≤ 5 × 10−16 cm2 s−1) in ScAlMgO4, and thus unintentional hydrogen incorporation into GaN overlayers should be minimal at typical growth temperatures.  相似文献   

5.
Schottky barrier diodes of chromium on n-type epitaxial gallium arsenide phosphide (GaAsP) were studied from 25°C to 440°C. The diodes showed significant rectification properties up to a temperature of 440°C. At high temperature the reverse leakage current was 1.15 mA at 25 V with a diode area of 1.14×10−3 cm2 as compared with 0.25-μA current at room temperature. The n factor derived from the slope of the ln I vs. V curves was 1.1. The barrier height for chromium was found to be 1.25 eV from the capacitance measurements and 1.12 eV from the saturation current vs. temperature measurements. The slope of the C-V curves yielded a carrier concentration of 6.0×1015 carriers per cm3.  相似文献   

6.
The photoconductivity decay curves after illumination of single crystal n- and p-type PbSe were analysed assuming recombination through different localized impurity levels in conjunction with direct recombination. The lifetimes deduced for direct (Auger and radiative) recombination below 250 K were in agreement with the calculated values for carrier concentrations 2·1017 cm−3. Furthermore, the existence of up to three impurity levels was concluded from the longer lifetime-components present in the decay curves. Appropriate approximations of the general recombination theory yielded energies separated between 20 and 50 meV from the nearer band edge and minority carrier cross sections 10−17−4·10−19 cm2 in the temperature range 250-100 K, and majority carrier cross sections 10−19−10−20 cm2 at T < 100 K for these levels.  相似文献   

7.
28Si+ implantation into Mg-doped GaN, followed by thermal annealing in N2 was performed to achieve n+-GaN layers. The carrier concentrations of the films changed from 3×1017 (p-type) to 5×1019 cm−3 (n-type) when the Si-implanted p-type GaN was properly annealed. Specific contact resistance (ρc) of Ti/Al/Pt/Au Ohmic contact to n-GaN, formed by 28Si+ implantation into p-type GaN, was also evaluated by transmission line model. It was found that we could achieve a ρc value as low as 1.5×10−6 Ω cm2 when the metal contact was alloyed in N2 ambience at 600 °C. Si-implanted GaN p–n junction light-emitting diodes were also fabricated. Electroluminescence measurements showed that two emission peaks at around 385 and 420 nm were observed, which could be attributed to the near band-edge transition and donor-to-acceptor transition, respectively.  相似文献   

8.
We present a new ohmic contact material NiSi2 to n-type 6H-SiC with a low specific contact resistance. NiSi2 films are prepared by annealing the Ni and Si films separately deposited on (0 0 0 1)-oriented 6H-SiC substrates with carrier concentrations (n) ranging from 5.8×1016 to 2.5×1019 cm−3. The deposited films are annealed at 900 °C for 10 min in a flow of Ar gas containing 5 vol.% H2 gas. The specific contact resistance of NiSi2 contact exponentially decreases with increasing carrier concentrations of substrates. NiSi2 contacts formed on the substrates with n=2.5×1019 cm−3 show a relatively low specific contact resistance with 3.6×10−6 Ω cm2. Schottky barrier height of NiSi2 to n-type 6H-SiC is estimated to be 0.40±0.02 eV using a theoretical relationship for the carrier concentration dependence of the specific contact resistance.  相似文献   

9.
Currently, large-area 3C–SiC films are available from a number of sources and it is imperative that stable high temperature contacts be developed for high power devices on these films. By comparing the existing data in the literature, we demonstrate that the contact behavior on each of the different polytypes of SiC will vary significantly. In particular, we demonstrate this for 6H–SiC and 3C–SiC. The interface slope parameter, S, which is a measure of the Fermi-level pinning in each system varies between 0.4–0.5 on 6H–SiC, while it is 0.6 on 3C–SiC. This implies that the barrier heights of contacts to 3C–SiC will vary more significantly with the choice of metal than for 6H–SiC. Aluminum, nickel and tungsten were deposited on 3C–SiC films and their specific contact resistance measured using the circular TLM method. High temperature measurements (up to 400°C) were performed to determine the behavior of these contacts at operational temperatures. Aluminum was used primarily as a baseline for comparison since it melts at 660°C and cannot be used for very high temperature contacts. The specific contact resistance (ρc) for nickel at room temperature was 5×10−4 Ω cm2, but increased with temperature to a value of 1.5×10−3 Ω cm2 at 400°C. Tungsten had a higher room temperature ρc of 2×10−3 Ω cm2, which remained relatively constant with increasing temperature up to 400°C. This is related to the fact that there is hardly any reaction between tungsten and silicon carbide even up to 900°C, whereas nickel almost completely reacts with SiC by that temperature. Contact resistance measurements were also performed on samples that were annealed at 500°C.  相似文献   

10.
A novel 2-bit nano-silicon based non-volatile memory is proposed to double memory density. The thin film structure exhibits two conduction states (ON and OFF) at different voltages and has a cost-effective structure. The structure utilizes the good electrical properties of fluorinated SiO2 thin films, together with the bi-stable properties conferred by the nano-silicon particles therein embedded. A polymeric layer of 8-hydroxyquinoline aluminum salt (Alq3) further deposited on the top of the nano-particle layer through chemical evaporation and a silver paste contact determines the final structure. The positive 0–15 V scan reveals two discontinuities with an ON/OFF ratio of 104–105 (2–4 V) and OFF/ON of 103 (12.5–13.0 V). The reverse scan displays again two distinct thresholds, range of 10.5–11.0 V (ON/OFF ratio 10−3), respectively, 0.5 V (OFF/ON ratio 10−5–10−4).  相似文献   

11.
A direct measurement of the dynamics of electrons in the X6 valley for a GaAs crystal by time-resolved absorption spectroscopy is reported for the first time. IR picosecond probe pulses were used to monitor the growth and decay of the population in the X6 valley subsequent to excitation by a 527 nm pump pulse. The intervalley X6→Γ6, L6 scattering time tx of 0.70 ± 0.50 ps is determined and the crossection for the X6→X7 transition is estimated to be 1.8 × 10−16 cm2.  相似文献   

12.
Injection electroluminescence has been studied in metal-semiconductor (MS) and in metal-insulator-semiconductor (MIS) tunnel diodes. The diodes were fabricated from degenerately doped p-type ZnTe. Bandgap recombination radiation has been observed at 293°K, 77°K and 4°K. The linewidth narrows from approximately 120 Å at 293°K to approximately 60 Å at temperatures below 77°K. External efficiencies of 10−4 to 10−6 have been observed. For current densities below 103 A/cm2 the light output increases as the fourth or fifth power of the current density. For current densities greater than 103 A/cm2 the light varies linearly or slightly sublinearly with current density. A new model for the emission from MS tunnel diodes is proposed which accounts for the observation that light emission occurs when the semiconductor is negatively biased. No evidence of stimulated emission has been observed up to current densities of 104 A/cm2.  相似文献   

13.
By measuring the ramp voltage I–V characteristics, we obtained the oxide trap density and capture cross-section for (O2 + HCl) dry oxidized samples in the temperature range 900–1100°C. It was found that the oxide trap density increases with an increase in the oxidation temperature. The activation energy of oxide trap incorporation is of the order of 4 eV. The capture cross-section determined for the oxide traps is of the order of 10−14 cm2.  相似文献   

14.
Ultra thin high-k zirconium oxide (equivalent oxide thickness 1.57 nm) films have been deposited on strained-Si/relaxed-Si0.8Ge0.2 heterolayers using zirconium tetra-tert-butoxide (ZTB) as an organometallic source at low temperature (<200 °C) by plasma enhanced chemical vapour deposition (PECVD) technique in a microwave (700 W, 2.45 GHz) plasma cavity discharge system at a pressure of 66.67 Pa. The trapping/detrapping behavior of charge carriers in ultra thin ZrO2 gate dielectric during constant current (CCS) and voltage stressing (CVS) has been investigated. Stress induced leakage current (SILC) through ZrO2 is modeled by taking into account the inelastic trap-assisted tunneling (ITAT) mechanism via traps located below the conduction band of ZrO2 layer. Trap generation rate and trap cross-section are extracted. A capture cross-section in the range of 10−19 cm2 as compared to 10−16 cm2 in SiO2 has been observed. The trapping charge density, Qot and charge centroid, Xt are also empirically modeled. The time dependence of defect density variation is calculated within the dispersive transport model, assuming that these defects are produced during random hopping transport of positively charge species in the insulating layer. Dielectric breakdown and reliability of the dielectric films have been studied using constant voltage stressing. A high time-dependent dielectric breakdown (TDDB, tbd > 1500 s) is observed under high constant voltage stress.  相似文献   

15.
Highly doped GaAs substrate material (doping level 1018 cm−3) has been implanted with 350 keV O+ ions with doses of 1014 – 1016 cm−2 to produce high resistivity layers which are stable at high temperatures. LPE growth of flat GaAs epilayers onto the implanted wafers was achieved up to doses of about 1 × 1015 O+/cm2 and 5 × 1015O+/cm2 for RT and 200°C implants, respectively. N-o-n and p-o-n structures (o: oxygen implanted) were fabricated in which breakdown voltages of up to 15 V were obtained. Examples for application of this isolation technique are shown.  相似文献   

16.
Boron ions (11B+ of 3·7 to 7·4 × 1011/cm2 were implanted at 60–120 keV into the channel region of p-channel MNOS double layer insulated gate field effect transistors through 920–940 Å of SiO2 and various thicknesses (300–1800 Å) of Si3N4 deposited on SiO2. Subsequent annealing was performed in a nitrogen atmosphere at 1000°C for 30 min. Acceleration energy, implant dose and Si3N4 thickness dependences of the shift of the threshold voltage showed good agreement with the calculated results based on Ishiwara and Furukawa's theory for distribution of implanted atoms in the double layered substrate, using the projected ranges and standard deviations larger than LSS predictions by the factor of 1·2 for SiO2 and 1·3 for Si3N4, respectively. The results on the gain terms and the breakdown voltages were qualitatively the same as those of 11B+-implanted p-channel MOS transistors.  相似文献   

17.
High current bulk GaN Schottky rectifiers   总被引:2,自引:0,他引:2  
GaN Schottky rectifiers employing guard-ring and SiO2 edge termination show almost ideal forward current characteristics, with ideality factor 1.08 and specific on-state resistance as low as 2.6×10−3 Ω cm2. A maximum forward current of 1.72 A at 6.28 V was achieved under pulsed (10% duty cycle) conditions. The reverse breakdown voltage was inversely dependent on rectifier area. The presence of defects in the GaN still dominates the reverse leakage, with both field emission and thermionic field emission contributions present. The parallel-plane breakdown voltage is never reached, even with the use of multiple edge termination methods, but the results show the promise of GaN rectifiers for power conditioning and electric utility applications.  相似文献   

18.
The mixed valence material, LixNi1−xO, has been investigated as a potential thermoelectric material. Measurements of the Seebeck coefficient, (μ VC), electrical resistivity, ρ(Ω-cm), and thermal conductivity, k(W/cm°C) have been made as a function of temperature and lithium concentration. The thermoelectric figure of merit, Z(2k), reaches a value of approximately 1·4×10−4 at 1100°C for the composition Li0.04Ni0.96O.  相似文献   

19.
Experiments are presented indicating that the recombination rate R in GaAs is given by the expression R = Bpn. The theory of Hall for direct transition is used to calculate the value of B as 1·4×10−10 cm3/sec. Practical GaAs transistors are shown to be feasible if base widths of 1 μ are used.  相似文献   

20.
IV Measurements on PtSi-Si Schottky structures in a wide temperature range from 90 to 350 K were carried out. The contributions of thermionic-emission current and various other current-transport mechanisms were assumed when evaluating the Schottky barrier height Φ0. Thus the generation-recombination, tunneling and leak currents caused by inhomogeneities and defects at the metal-semiconductor interface were taken into account.

Taking the above-mentioned mechanisms and their temperature dependence into consideration in the Schottky diode model, an outstanding agreement between theory and experiment was achieved in a wide temperature range.

Excluding the secondary current-transport mechanisms from the total current, a more exact value of the thermionic-emission saturation current Ite and thus a more accurate value ofΦb was reached.

The barrier height Φb and the modified Richardson constant A** were calculated from the plot of thermionic-emission saturation current Ite as a function of temperature too. The proposed method of finding Φb is independent of the exact values of the metal-semiconductor contact area A and of the modified Richardson constant A**. This fact can be used for determination of Φb in new Schottky structures based on multicomponent semiconductor materials.

Using the experimentally evaluated value A** = 1.796 × 106 Am−2K−2 for the barrier height determination from IV characteristics the value of Φb = 0.881 ± 0.002 eV was reached independent of temperature.

The more exact value of barrier height Φb is a relevant input parameter for Schottky diode computer-aided modeling and simulation, which provided a closer correlation between the experimental and theoretical characteristics.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号