首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A new contactless method for supplying energy to a fluidized bed is presented. An electromagnetic field supplies power to electro conductive inert particles. This technique is characterized by high energy densities and fast heating rates as well as high efficiency. It is essential in the metal processing industry. The experimental results show that the advantages of inductive heating can also be used for fluidized bed applications. The key aspect here is the determination of the time response and its parameters.  相似文献   

3.
Heat and mass transfer in fluidized beds . Methods of calculation are presented which enable reasonably accurate prediction of heat and mass transfer coefficients in fluidized beds. Some well established equations already given in the literature could be used for estimating the range of existence of the fluidized bed and for calculating maximum fluidization velocities, bed expansion, and particle-to-fluid heat and mass transfer. However, a new model had to be developed for the wall-to-bed heat transfer from solid surfaces immersed in fluidized beds. This model makes use of some basic ideas adopted from the kinetic theory of gases in order to describe the mechanism of energy transfer through the moving particles. Predictions with this new model are in good agreement with most of the experimental observations, particularly regarding the effects of particle diameter, temperature, pressure, physical properties of gas and particles, and gas velocity.  相似文献   

4.
5.
Heat transfer in dense fluidized beds have been extensively studied. However, there is not much detailed information about the mechanism of surface-to-suspension heat transfer in the freeboard region. In the present work, a newly designed heating plate was used to measure the plate-surface-to-particle-suspension heat transfer coefficients in the freeboard.The experimental unit consisted of a 30 cm i.d. fluidized bed reactor packed with fluidized catalytic particles of mean particle size 90 μm. Three types of plate orientations were used to test directional effects of surface on heat transfer rate. Height of the freeboard was 171 cm, and the superficial gas velocity was varied from 0.28 to 0.64 m/s. Local solids concentrations in the freeboard were also obtained by a nozzle-type sampling probe. Data on axial distribution of solids concentration were used to find out the solids kinematics in the freeboard region. Finally, a surface-to-suspension heat transfer model was developed to elucidate the surface to particle heat transfer mechanism in this lean phase system.The model is based on the transient gas-convective heating of single particles when sliding over the heating plate and the assumption of instantaneous attachment–detachment equilibrium between particles and the plate surface.  相似文献   

6.
Dielectric heating with radio‐frequency energy can be applied for a wide spectrum of dry or moist zeolites. It is possible to homogeneously heat packed beds in technical scale. The energy absorption strongly varies with the zeolite type enabling selective heating of layered arrangements containing different zeolites. The specific effect of water interacting with the structural cations allows establishing pronounced temperature gradients within a packed bed with varying water content. For distinct materials such as zeolite NaY, a coupled water‐temperature pulse moving through the packed bed can be established. Potential applications for such a so‐called thermo‐chromatographic pulse range from adsorptive catalytic off‐gas cleaning to thermal regeneration of zeolites in the context of gas drying.  相似文献   

7.
内热式惰性粒子流化床中膏状物料干燥模型   总被引:1,自引:0,他引:1       下载免费PDF全文
朱学军  叶世超 《化工学报》2010,61(3):601-606
通过对惰性粒子流化床中膏状物料干燥机理的分析,得到了干燥时间及单位面积床层水分汽化量的数学计算式,可对干燥器的性能进行预测。采用带浸没加热管的惰性粒子流化床对膏状钛白物料进行干燥中试研究,采用气流式喷嘴将膏状物料分散成200~400μm的小液滴喷洒在惰性粒子表面进行干燥,探索了适宜的干燥条件,测定和确定了最佳的干燥工艺参数、操作参数和设备参数。结果表明:该干燥工艺能强化床内传热传质,促进高黏性膏糊状物料很好地分散,床层温度分布均匀,干燥器的操作弹性大,热量消耗低,干燥强度高,传热系数可达300W·m-2·K-1以上。  相似文献   

8.
The production capacities of plants for metal pulverisation are frequently rated according to the minimum throughput of melt flowing from the distributor crucible to pulverisation. Especially in the case of high‐melting point metals and their alloys deficiencies occur in the thermal balance of the crucible in the exit section as a result of gas expansion at the pulverisation gas jets, which act as heat sinks. Minimum throughputs and associated limiting values of the convective heat transfer of the melt are stipulated in order to prevent "freezing" (solidification of the melt) in the crucible. The pertinent situation is illustrated for copper and steel melts and technical possibilities for compensating for heat deficiencies by inductive heating of the distributor exit are presented. In addition, the demand for minimum throughputs can be abandoned, and there result possibilities of scaling‐down and energy conservation as well as improvement of powder discharge.  相似文献   

9.
A relatively new variant in fluidized bed technology, designated as the swirling fluidized bed (SFB), was investigated for its heat transfer characteristics when operating with Geldart type D particles. Unlike conventional fluidized beds, the SFB imparts secondary swirling motion to the bed to enhance lateral mixing. Despite its excellent hydrodynamics, its heat transfer characteristics have not been reported in the published literature. Hence, two different sizes of spherical PVC particles (2.61 mm and 3.65 mm) with the presence of a center body in the bed have been studied at different velocities of the fluidizing gas. The wall-to-bed heat transfer coefficients were measured by affixing a thin constantan foil heater on the bed wall. Thermocouples located at different heights on the foil show a decrease in the wall heat transfer coefficient with bed height. It was seen that only a discrete particle model which accounts for the conduction between the particle and the heat transfer surface and the gas-convective augmentation can adequately represent the mechanism of heat transfer in the swirling fluidized bed.  相似文献   

10.
The heat transfer coefficient on the service side of a double‐pipe heat exchanger is determined with the Wilson‐plot method. Condensing hexanol vapor is used as heating medium and water in single phase counter current flow on the product side. In addition to the Wilson‐plot, two alternative methods are used for calculating the service side film heat transfer coefficient: the Nusselt theory for film condensation and the extraction from an overall heat transfer coefficient based on an energy balance and employing the Gnielinski equation for the tube side heat transfer. As the result, heat transfer coefficient can be calculated as a function of the transferred heat flux employing the Wilson‐plot.  相似文献   

11.
Spout fluidized beds are frequently used for the production of granules or particles through granulation. The products find application in a large variety of applications, for example detergents, fertilizers, pharmaceuticals and food. Spout fluidized beds have a number of advantageous properties, such as a high mobility of the particles, which prevents undesired agglomeration and yields excellent heat transfer properties.A discrete element model is used describing the dynamics of the continuous gas phase and the discrete droplets and particles. For each element momentum balances are solved. The momentum transfer among each of the three phases is described in detail at the level of individual elements.The results from the discrete element model simulations are compared with local measurements of time time-averaged particle volume fractions as well as particle velocities by using a novel fibre optical probe in a fluidized bed of 400 mm I.D. Simulations and experiments were carried out for three different cases using Geldart B type aluminium oxide particles: a freely bubbling fluidized bed; a spout fluidized bed without the presence of droplets and a spout fluidized bed with the presence of droplets. It is found that the experimental and numerical results agree in a qualitative manner.It is demonstrated how the discrete element model can be used to obtain information about the interaction of the discrete phases, i.e. the growth zone in a spout fluidized bed. Additional analysis of the numerical results indicates that liquid breakthrough does not take place for the studied test case.  相似文献   

12.
Wall-to-bed heat transfer in liquid fluidized beds, particulately and aggregatively fluidized, was studied. Glass particles fluidized with water gave particulate fluidization and lead particles with water gave aggregative fluidization. Local heat transfer coefficients and bed temperature profiles were measured. Heat transfer coefficients were found to be strongly dependent on particle size and porosity and increased with increasing particle size, but were independent of the height of the heater surface from the grid. Any variations in local bed properties, such as porosity do not affect wall-to-bed heat transfer. The heat transfer coefficients show a characteristic, maximum at porosities near 0.7 for both systems. Bed temperature profiles deviate considerably from open-pipe values.A two-resistance model for the heat transfer resistance agrees well with the data. Bed resistance is modeled by a radial eddy diffusivity, which indicates the mixing effectiveness in the core of the bed. Glass beds (particulate) show a maximum mixing effectiveness at porosities near 0.7 and the mixing effectiveness increases with particle diameter. Lead beds (aggregative) show two maxima in mixing effectiveness, the first between porosities of 0.5 and 0.6, and the second between porosities of 0.7 and 0.8. Mixing is greatest at an intermediate particle size in the case of lead beds. In both systems the fraction of the total resistance in the bed core increases as porosity decreases towards packed bed conditions.  相似文献   

13.
A two resistance model is proposed for the heat transfer between a coaxially mounted heater and a three phase fluidized bed. Effects of gas and liquid velocity and particle size on individual heat transfer resistances in the heater and in the fluidized bulk zones have been determined. The optimum bed porosity at which the maximum heat transfer coefficient occurred coincided with the bed porosity at which the boundary layer thickness around the heater attained a minimum value. The fluidized bed resistance attained its minimum value when the maximum heat transfer coefficient is achieved in two and three phase fluidized beds. The heat transfer in the zone adjacent to the healer is found to be the rate controlling step since the contribution of fluidized bed resistance was found to be less than 10% of the heater zone resistance in two and three phase fluidized beds. The heat transfer resistances in liquid and three-phase fluidized beds have been represented by a modified Stanton and Peclet numbers based on the heat transfer resistances in the heater zone and in the fluidized bulk zone in series.  相似文献   

14.
朱学军  叶世超  吕芹 《化学工程》2007,35(12):18-21
采用带浸没加热管的惰性粒子振动流化床对膏状物料干燥进行了实验研究。考察了加料速率、进气温度、进气速度、加热管功率、振动强度等参数对床温和体积传热系数的影响,得出了计算体积传热系数的关联式。结果表明,在流化床中增设振动和浸没加热管装置,能大大强化传热传质,体积传热系数随加料量、振动强度、加热管功率、进风速度的增加而增大,随进气温度的增加而减小。其结果对惰性粒子流化床干燥器的设计和改进具有重要的指导意义。  相似文献   

15.
Gas-solid heat transfer in rotating fluidized beds in a static geometry is theoretically and numerically investigated. Computational fluid dynamics (CFD) simulations of the particle bed temperature response to a step change in the fluidization gas temperature are presented to illustrate the gas-solid heat transfer characteristics. A comparison with conventional fluidized beds is made. Rotating fluidized beds in a static geometry can operate at centrifugal forces multiple times gravity, allowing increased gas-solid slip velocities and resulting gas-solid heat transfer coefficients. The high ratio of the cylindrically shaped particle bed “width” to “height” allows a further increase of the specific fluidization gas flow rates. The higher specific fluidization gas flow rates and increased gas-solid slip velocities drastically increase the rate of gas-solid heat transfer in rotating fluidized beds in a static geometry. Furthermore, both the centrifugal force and the counteracting radial gas-solid drag force being influenced by the fluidization gas flow rate in a similar way, rotating fluidized beds in a static geometry offer extreme flexibility with respect to the fluidization gas flow rate and the related cooling or heating. Finally, the uniformity of the particle bed temperature is improved by the tangential fluidization and resulting rotational motion of the particle bed.  相似文献   

16.
Wall to bed heat transfer has been studied in three-phase fluidized beds with a cocurrent up-flow of water and air. Six sizes of glass beads, two sizes of activated carbon beads and one size of alumina beads, varying in average diameter from 0.61 to 6.9 mm and in density from 1330 to 3550 kg/m3, were fluidized in a 95.6 mm diameter brass column heated by a steam jacket. Complementary heat transfer experiments have been performed also for a gas–liquid cocurrent column and liquid–solid fluidized beds. The wall-to-bed coefficient for heat transfer in the gas–liquid–solid fluidized bed is evaluated on the basis of the axial dispersion model concept. The ratio of the wall-to-bed heat transfer coefficient in the gas–liquid–solid fluidized bed to that in the liquid–solid fluidized bed operated at the same liquid flow rate is correlated in terms of the ratio of the velocity of gas to that of liquid and the properties of solid particles. A correlation equation for estimating the wall-to-bed heat transfer coefficient in the liquid–solid fluidized bed is also developed.  相似文献   

17.
A two phase biomass char (biochar) steam gasification model based on the systems kinetics is developed in a bubbling fluidized bed with concentrated solar heat as source of energy. The model calculates the dynamic and steady state profiles, as well as the complex parameters of fluidized beds. This robust model is capable of predicting the temperature and concentration profiles of gases in the bubble, emulsion gas and solid phases. The Rosseland equation is used to calculate the radiative transfer within the bed. Due to the nature of the fluidized bed, the small bed thermal conductivity and bigger void between particles, there is a large temperature gradient throughout the bed, indicating that the system is highly non-isothermal. The set-up of a fluidized bed with solar irradiation in the upper side of the reactor is found to be a less efficient gasifying system in comparison with a packed bed, but could be optimized if the source of heat is changed to the bottom of the reactor. The trends and responses of the model are in good agreement with the experimental trends reported in the literature. Hydrogen is the principal product followed by carbon monoxide, the carbon dioxide production is small and the methane production is negligible.  相似文献   

18.
对Shedid等搭建的圆柱体流化床采用欧拉?欧拉法进行三维数值模拟,考察了颗粒球形度、表观进气速度和床料初始堆积高度对流化床内垂直加热壁面与流动床料之间对流传热特性的影响,采用有效导热系数分别计算气相和固相的对流传热系数。结果表明,随表观进气速度增大,流化床内颗粒物料湍流运动加剧,加热壁面平均温度和流体平均温度下降,壁面流体间传热平均温度差减小,壁面流体间对流传热系数增大;随初始床料高度增加,流化床内颗粒与加热壁面的接触面积增大,导致固相平均对流传热系数增大。  相似文献   

19.
This paper presents a theoretical model for predicting the radiative heat transfer rate between high-temperature fluidized bed and immersed walls, which can be used upon the base of emulsion packet model of heat transfer in bubbling fluidized bed. The model adopted radiative flux computation method to calculate radiative heat transfer between fluidized disperse phase contacting to the wall and immersed walls, in which the absorption and back-scattering coefficients was obtained from the reflectivity and the absorptivity of a layer of disperse media of a single particle thickness. In such a model, many factors, such as particle size, particle emissivity, bed void fraction, fluidized bed and wall temperatures, and so on, are included theoretically to calculate radiative heat transfer between immersed walls and fluidized beds. As a result, the model results provide a reasonable explanation of the experimental observation of that radiative heat transfer rate in fluidized beds increases with the increases of the superficial fluidizing velocity. In addition, the modeling prediction for the trend of radiative heat transfer rate between the fluidized bed and its immersed surface on the variation of wall temperature conforms to the classical experimental trend.  相似文献   

20.
脱硅中液固循环流化床清洁传热   总被引:7,自引:1,他引:6       下载免费PDF全文
考察了铝土矿熟料溶出粗液脱硅加热过程中的结垢行为,采用有机-无机复合材质的惰性固体颗粒研究了循环流化床对脱硅加热过程中硅渣结垢的清除及防止性能.结果表明:硅渣结垢曲线为具有诱导期的渐近式曲线,硅渣结垢机理为结晶结垢和微颗粒沉积结垢混合机理;循环流化床不仅能有效防止硅渣结垢的形成,而且能完全清除已有的硅渣垢层,硅渣结垢的清除速率随操作流速及固体颗粒浓度的增大而增大;惰性固体颗粒的引入不影响硅渣结垢的机理.根据液固流化床的防垢机理建立了结垢模型,其预报值与实验值吻合较好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号