首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKROUND: Mammalian sex hormones (MSH)—progesterone, β‐estradiol and androsterone—enhance plant growth and development by stimulating significant morphological and biochemical parameters under normal conditions. However, there is no report regarding their effects on plants exposed to environmental stress conditions. Therefore, the present study was focused on elucidating the possible positive effects of MSH on seedling growth, antioxidant activity and synthesis reactions in maize seeds exposed to salt stress, one of the most important environmental stresses. For this purpose, the various concentrations (10?6, 10?8, 10?10 and 10?12 mol L?1) of MSH were studied. RESULTS: Salinity (100 mmol L?1 NaCl) significantly reduced root length and seedling height, whereas MSH treatment significantly ameliorated the adverse effects of salinity on root length and seedling height. On the other hand, although salinity increased soluble protein, soluble sugar and proline content in 7‐day‐old maize seedlings, these were higher in MSH‐treated seedlings. Similarly, MSH treatment augmented superoxide dismutase, peroxidase and catalase activities under salt stress, whereas it decreased superoxide production and lipid peroxidation level. The most favorable concentrations were determined as 10?8 mol L?1 for progesterone and β‐estradiol and 10?10 mol L?1 for androsterone. CONCLUSION: Exogenous MSH application was found to have an important ameliorative effect on growth of seeds exposed to salt stress by stimulating antioxidant activity and synthesis reactions. This is the first study investigating the effects of MSH on germination of seeds exposed to stress conditions. Copyright © 2011 Society of Chemical Industry  相似文献   

2.
BACKGROUND: Safflower (Carthamus tinctorius L.) has gained considerable ground as a potential oil‐seed crop. However, its yield and oil production are adversely affected under saline conditions. The present study was conducted to appraise the influence of salt (NaCl) stress on yield, accumulation of different inorganic elements, free proline and activities of some key antioxidant enzymes in plant tissues as well as seed oil components in safflower. Two safflower accessions differing in salt tolerance (Safflower‐33 (salt sensitive) and Safflower‐39 (salt tolerant)) were grown under saline (150 mmol L?1) conditions and salt‐induced changes in the earlier‐mentioned physiological attributes were determined. RESULTS: Salt stress enhanced leaf and root Na+, Cl? and proline accumulation and activities of leaf superoxide dismutase, catalase and peroxidase, while it decreased K+, Ca2+ and K+/Ca2+ and Ca2+/Na+ ratios and seed yield, 100‐seed weight, number of seeds, as well as capitula, seed oil contents and oil palmitic acid. No significant effect of salt stress was observed on seed oil α‐tocopherols, stearic acid, oleic acid or linoleic acid contents. Of the two safflower lines, salt‐sensitive Safflower‐33 was higher in leaf and root Na+ and Cl?, while Safflower‐39 was higher in leaf and root K+, K+/Ca2+ and Ca2+/Na+ and seed yield, 100‐seed weight, catalase activity, seed oil contents, seed oil α‐tocopherol and palmitic acid. Other attributes remained almost unaffected in both accessions. CONCLUSION: Overall, high salt tolerance of Safflower‐39 could be attributed to Na+ and Cl? exclusion, high accumulation of K+ and free proline, enhanced CAT activity, seed oil α‐tocopherols and palmitic acid contents. Copyright © 2011 Society of Chemical Industry  相似文献   

3.
The inhibition mechanism of soybean lipoxygenase (LOX) by β‐carotene was studied. Addition of β‐carotene into the reaction mixture decreased the rate of conjugated diene formation. Increasing the concentration of β‐carotene in the reaction mixture resulted in a decrease in the rate of conjugated diene formation. Although the rate of conjugated diene formation was lower in the presence of β‐carotene, the same amounts of linoleic acid hydroperoxides were formed by the enzyme at the end of the reaction, both with and without β‐carotene in the reaction medium. The rates of conjugated diene formation for 40, 20, 10 and 4 U mL?1 LOX enzyme were almost equal to zero when the concentrations of β‐carotene were 20, 17.5, 15 and 10 µmol L?1 in model reaction systems, respectively. β‐Carotene directly influences the amount of enzyme in the reaction medium available for the catalytic conversion of linoleic acid into corresponding hydroperoxides. The results obtained here suggest that β‐carotene reacts with linoleyl radical (L?) at the beginning of the chain reaction, preventing the accumulation of conjugated diene forms (LOO?, LOO? and LOOH). Since L? transforms back to its original form of LH, the enzyme cannot complete the chain reaction and thus remains at inactive Fe(II) form. Copyright © 2005 Society of Chemical Industry  相似文献   

4.
BACKGROUND: Hydroponic culture was used to investigate the effect of NaCl concentrations on the growth, nutrient uptake, phenolic content and antioxidant activity of Salvia officinalis L. leaves. The antioxidant capacity of the methanolic extract of S. officinalis was evaluated by using 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) radical scavenging test and β‐carotene‐linoleic acid bleaching assay. Physiological and biochemical parameters of S. officinalis were assessed after 4 weeks of salt treatment with 0, 25, 50, 75 and 100 mmol L?1 NaCl. RESULTS: Plant growth exhibited a reduction of 61% at 100 mmol L?1 NaCl. Assessment of Na+, K+ and Ca2+ and water contents of shoots and roots showed that S. officinalis is able to regulate Na+ concentration by active compartmentation in vacuoles. Salvia officinalis phenolics were increased in response to salinity at the threshold of 75 mmol L?1 NaCl. This herb was also found to be able to achieve important DPPH? quenching activity and to inhibit the β‐carotene‐linoleic acid bleaching notably enhanced by salt treatment. It is interesting to highlight the correlation between the phenolic and antioxidant activity, suggesting the involvement of these compounds in this activity. CONCLUSION: Salvia officinalis treated with 75 mmol L?1 NaCl constitutes a potential source for production of secondary metabolites useful in several applications. Copyright © 2011 Society of Chemical Industry  相似文献   

5.
The extent of disappearance of 10 mono‐ and sesquiterpenes in presence of mixed rumen micro‐organisms has been measured in 24‐h batch cultures. The molecules that were tested are frequently found in the plants consumed by ruminants in highland pastures (limonene, β‐myrcene, β‐ocimene, α‐pinene, sabinene, γ‐terpinene and thymol) or are potential markers of the diet (camphene, β‐caryophyllene and α‐copaene). All terpenes were tested at 2 µL mL?1, except α‐copaene and thymol, which were tested at 0.9 µL mL?1 and 2 mg mL?1, respectively. Camphene and thymol were not degraded to a significant extent. The disappearance of part of β‐caryophyllene, (?)‐limonene and γ‐terpinene could not be attributed to the direct action of rumen micro‐organisms but rather than to an effect of the extracellular medium. In contrast, a third group of one sesquiterpene (α‐copaene) and four monoterpenes (myrcene, β‐ocimene, α‐pinene and sabinene) was extensively degraded by rumen micro‐organisms, at rates of 1.6, 4.5, 3.5, 4.8 and 5.4 µmol mL?1 inoculum day?1, respectively. The preliminary exposure of rumen micro‐organisms to a specific blend of essential oils compounds, containing mainly thymol, guajacol and limonene, increased the extent of disappearance of γ‐terpinene only. Copyright © 2007 Society of Chemical Industry  相似文献   

6.
BACKGROUND: Recent studies have shown that as a plant‐growth‐promoting rhizobacteria (PGPR), Azospirillum inoculation could contribute to the mitigation of the negative effects caused by salt on lettuce growth. Moreover, the use of PGPR to alleviate the effects of transplant in vegetables has also been recognized. However, the scarce data available on the use of Azospirillum to improve lettuce growth before and after transplant under saline conditions prompted us to focus our research on this topic. RESULTS: Early germination and seedling settlement of seeds exposed to 0 and 40 mol m?3 NaCl were clearly improved by Azospirillum inoculation. At 0 mol m?3 NaCl, plant establishment, leaf mass and root mass parameters before transplant were significantly higher in inoculated plants than in non‐inoculated controls. At harvest, leaf fresh weight, ascorbic acid content and plant survival to transplant were also significantly higher in Azospirillum‐inoculated plants grown at 0 mol m?3 NaCl. In addition to these effects, leaf dry weight, area and chlorophyll content were also increased by Azospirillum inoculation when plants were grown at 40 mol m?3 NaCl. CONCLUSION: Azospirillum‐inoculated lettuce seeds yield a higher number of transplanted plants with superior quality than non‐inoculated controls grown at 0 or at 40 mol m?3 NaCl. Copyright © 2012 Society of Chemical Industry  相似文献   

7.
Low‐field nuclear magnetic resonance (NMR) spin–spin relaxation (T2) measurements were used to study the denaturation and aggregation of β‐lactoglobulin (β‐LG) solutions of varying concentrations (1–80 g L?1) as they were heated at temperatures ranging from ambient up to 90 °C. For concentrations of 1–10 g L?1, the T2 of β‐LG solutions did not change, even after heating to 90 °C. A decrease in T2 was only observed when solutions having higher concentrations (20–80 g L?1) were heated. Circular dichroism (CD) spectroscopy and fluorescence tests using the dye 1‐anilino‐8‐naphthalene sulfonate (ANS) on 0.2 and 1 g L?1 solutions, respectively, indicated there were changes in the protein's secondary and tertiary conformations when the β‐LG solutions reached 70 °C and above. In addition, dynamic light scattering (DLS) showed that protein aggregation occurred only at concentrations above 10 g L?1 and for heating at 70 °C and above. The hydrodynamic radius increased as T2 decreased. When excess 2‐mercaptoethanol was added, the changes in both T2 and the hydrodynamic radius followed the same trend for all β‐LG protein concentrations between 1 and 40 g L?1. These observations led to the conclusion that the changes in T2 were due to protein aggregation, not protein unfolding. Copyright © 2007 Society of Chemical Industry  相似文献   

8.
BACKGROUND: An immature wheat spike culture system was used to monitor cadmium (Cd) accumulation in grains, hulls and awns of bread wheat and durum wheat. Immature spikes were cultured prior to anthesis in a medium containing 50 g L?1 sucrose and 0.4 g L?1 L ‐glutamine, supplemented with 0, 0.1, 0.5, 1, 2, 3, 4, 5, 10, 15, 20 or 25 mg L?1 cadmium chloride (CdCl2). Grains were collected at maturity and their Cd accumulation was determined using inductively coupled plasma mass spectrometry (ICP‐MS). RESULTS: Cd accumulation at CdCl2 concentrations of 3 mg L?1 and above was higher in grains of durum wheat compared with bread wheat. In hulls a similar trend was observed at CdCl2 concentrations above 15 mg L?1. Starch concentration in grains increased slightly at 3 and 4 mg L?1 CdCl2. Cd accumulation negatively affected grain protein concentration. Expression patterns of Cd‐related genes glutathione reductase (TaGR), metallothionein (MT) and phytochelatin synthase (PCS) in spikes cultured in media containing 0, 5, 10, 15 and 25 mg L?1 CdCl2 at 5 days post‐anthesis showed that TaGR and PCS expression in bread wheat was up‐regulated at 5 mg L?1 CdCl2 but down‐regulated at other CdCl2 concentrations. However, in durum wheat, expression of all three genes was down‐regulated or remained unchanged. CONCLUSION: This study demonstrates that immature spike culture can be used to study Cd accumulation in grains and can delineate hyper‐accumulating durum wheat from bread wheat at CdCl2 concentrations of 2 mg L?1 and above. Copyright © 2011 Society of Chemical Industry  相似文献   

9.
BACKGROUND: The time course of polyphenol oxidase (PPO) activity in the leaves of two olive cultivars (Picual and FS‐17) irrigated with nutrient solutions differing in Mn concentration (0, 2 and 1280 µmol L?1) was studied under hydroponic conditions to determine whether PPO activity could be used as an early criterion of Mn status of olive plants, and to elucidate whether genotypic differences exist between the two olive cultivars studied, concerning the effect of Mn concentration on PPO activity. RESULTS: In all the Mn treatments, PPO activity was greater in Picual than in FS‐17. Under excess Mn (1280 µmol L?1), PPO activity gradually increased with time, starting from day 30 of the experiment in both cultivars, and this increase preceded the appearance of Mn toxicity symptoms. In contrast, in the other two Mn treatments (0 and 2 µmol L?1) PPO activity increased and afterwards decreased during the experiment, but the trend was not clear. In the 1280 µmol L?1 treatment, PPO activity linearly increased (R = 0.8836 for Picual and 0.943 for FS‐17) with the increase of Mn concentration in the leaves of both cultivars. In the 1280 µmol L?1 Mn treatment, PPO activity was negatively related with Fe and Zn concentrations in the leaves, and positively in the 0 and 2 µmol L?1 Mn treatments with the Ca, Mg and K concentrations. CONCLUSION: From the differential time course of PPO activity in the three Mn treatments (0, 2 and 1280 µmol L?1), it is concluded that periodic measurements of PPO activity in the leaves of the olive cultivars Picual and FS‐17 can be used for the early detection of Mn toxicity (before the appearance of symptoms). Copyright © 2010 Society of Chemical Industry  相似文献   

10.
Twenty‐one commercial enzyme preparations used in winemaking were characterised for the α‐L‐rhamnosidase, α‐L‐arabinosidase, β‐D‐xylosidase, ?β‐D‐galactosidase, β‐D‐glucosidase, esterase, protease, cinnamoyl esterase and laccase activities. A new rapid fluorimetric method to assay esterase activity was developed. Enzyme preparations differed for the level of each enzyme activity assayed rather than for the type of enzymatic activity detected. High levels of protease, glycosidase, esterase and cinnamoyl esterase activity were found among enzyme preparations for different technological applications. A drastic reduction in the level of cinnamoyl esterase was observed in commercial grape juice, pH 3.6, total acidity 5.3 g L?1, sugar 170 g L?1. Protease activity was only weakly reduced, from 10 to 20%, in commercial grape juice. β‐glucosidase activity levels are reduced in the presence of increasing concentration of glucose but are still present at the higher glucose concentration (100 g L?1). The extent of the reduction observed was dependent on the enzymatic preparations tested.  相似文献   

11.
BACKGROUND: Grapes and red wines are rich sources of phenolic compounds such as anthocyanins, catechins, flavonols and stilbenes, most of which are potent antioxidants showing cardioprotective properties. We first isolated scirpusin A, a hydroxystilbene dimer, from a wine grape of Xinjiang, and studied its antioxidant activity. RESULTS: Reactive oxygen species scavenging effects and the protection against reactive singlet oxygen‐induced DNA damage of scirpusin A have been investigated in our experiments. The concentration of scirpusin A required to inhibit 50% of 1O2 generation was 17 µmol L?1, while addition of scirpusin A at 140 µmol L?1 caused complete inhibition. Further kinetic study revealed that the reaction of Scirpusin A with singlet oxygen has an extremely high rate constant (ka = 4.68 × 109 L mol?1 s?1). Scirpusin A (140 µmol L?1) exhibited significant inhibition effects on pBR322 DNA breakage. However, scavenging effects of scirpusin A on superoxide anion O2?? and hydroxyl radical ·OH were not potent as the inhibitor rates at a concentration of 1400 µmol L?1 were 28.83% and 19.5%, respectively. CONCLUSION: The present study shows that scirpusin A is a selective quencher of singlet oxygen and a protector against reactive singlet oxygen‐induced pBR322 DNA damage at very low concentrations. Copyright © 2010 Society of Chemical Industry  相似文献   

12.
BACKGROUND: Sugar content is one of the main characteristics related to the quality of fruit. Research confirms that nitric oxide (NO) involves a physiological process and prolongs the storage life of fruit. However, little attention has been paid to the effects of NO on sugar metabolism in fruit during storage. In this study, the effect of different concentrations (0, 10, 30 µmol L?1) of exogenous NO treatment on sugar content and related enzyme activities in ‘Feicheng’ peach fruit was investigated during storage (0–12 days after harvest) at room temperature (25 °C). RESULTS: Results showed that the decrease of firmness and accumulation of sugar and acid:sugar ratio in peach fruit during storage were significantly inhibited by treatment with 10 µmol L?1 NO. Treatment with 10 µmol L?1 NO could promote fructose and glucose metabolism during the first 4 days of storage, and increase the content of sucrose and the activities of sorbitol dehydrogenase, sorbitol oxidase and sucrose phosphate synthase in peach fruit during storage. However, acid invertase activity from 8 to 12 days of storage and neutral invertase activity during the first 4 days of storage were inhibited by treatment with 10 µmol L?1 NO. At the same time, treatment with 10 µmol L?1 NO inhibited sucrose synthase (SS) activity in decomposition during storage and SS activity in synthesis from 8 to 12 days of storage. CONCLUSION: Treatment with 10 µmol L?1 NO had a significant impact on content of soluble sugars and related enzyme activities in ‘Feicheng’ peach fruit during storage (0–12 days) at room temperature (25 °C). Copyright © 2011 Society of Chemical Industry  相似文献   

13.
Shoots, plantlets and semi‐differentiated callus (SDC) cultures of Pandanus amaryllifolius capable of producing high levels of basmati rice flavour were established in vitro using Murashige and Skoog nutrient medium. A total of 10% of the initial explants responded to produce shoot cultures in the presence of benzylamino purine (BAP) (0.5 mg L?1) and glutamine (100 mg L?1). Leaf explants and basal portions of shoots produced SDC whereas elongated in vitro shoots could be continuously multiplied, using BAP (1.5 mg L?1) and kinetin (Kn) (1.0 mg L?1), and rooted in half‐strength medium for ex vitro cultivation leading to a process of micropropagation. Steam‐distillation extraction (SDE) followed by gas chromatography‐mass spectrometry (GC‐MS) analysis of various cultured organs and spent liquid medium used for SDC revealed the presence of 2‐acetyl‐1‐pyrroline (2‐AP) to various extents. This 2‐AP compound has been identified as the major flavouring compound of scented basmati and other scented rice varieties. 2‐AP was found to be highest, on a fresh weight basis, in SDC (19.7 mg kg?1) on the 40th day, whereas in vitro roots, shoots and field leaves (of one‐year‐old plant) had lower levels of 15, 6.8 and 14 mg kg?1, respectively. Further enhancement of 2‐AP in SDC using precursor was possible by feeding into medium 1 mmol L?1 of L ‐proline where a highest level of 21.67 ppm of 2‐AP accumulated on the seventh day whereas a higher level of 2 mmol L?1 of L ‐proline suppressed 2‐AP levels. The present report is the first on the tissue culture studies of P. amaryllifolius where continuous production of plantlets as well as synthesis of high levels of 2‐AP has been documented. Copyright © 2005 Society of Chemical Industry  相似文献   

14.
BACKGROUND: Oral therapy with phenylalanine ammonia lyase (PAL), naturally encapsulated in plant cells, may provide a potential alternative treatment for hyperphenylalaninemic patients, including those with phenylketonuria. Therefore different sources of plant tissue were investigated for PAL activity. RESULTS: Enzyme activity was highest in grain seedlings, with maximal enzyme activity in 7‐day‐old red spring wheat (Triticum aestivum L.) seedlings. The PAL activities of leaves and roots/endosperm of wheat seedlings were 11.90 ± 2.64 and 6.48 ± 1.59 µmol h?1 g?1 dry weight respectively. Three PAL‐related polypeptides with molecular weights of 74, 83 and 103 kDa were identified in wheat seedling leaf tissues, while only the 74 kDa polypeptide was detected in root/endosperm tissues. Dehydration was investigated as a method of concentrating PAL in wheat seedlings. Freeze‐drying was found to retain the most PAL activity (>90% recovery on a dry weight basis) compared with air drying and vacuum microwave drying for both leaf and root/endosperm samples. CONCLUSION: This study has led to a better understanding of PAL activity and stability in plant tissues and provides the basis for developing a natural plant preparation as a dietary supplement for the treatment of hyperphenylalaninemia. Copyright © 2007 Society of Chemical Industry  相似文献   

15.
An inhibitory compound acting against rat platelet 12‐lipoxygenase was isolated from the peel of Lumie fruit (Citrus lumia) by activity‐guided separation. It was identified as eriocitrin (eriodictyol 7‐O‐rutinoside) by spectroscopic analyses. Eriocitrin inhibited 5‐lipoxygenase (IC5029.1 µmol L?1) from rat peritoneal polymorphonuclear leukocytes in addition to 12‐lipoxygenase (IC5022.3 µmol L?1). Its aglycone, eriodictyol (5,7,3′, 4′‐tetrahydroxyflavanone), was a much more potent inhibitor of both 12‐lipoxygenase (IC500.07 µmol L?1) and 5‐lipoxygenase (IC500.20 µmol L?1). It also inhibited the production of leukotriene B4 in intact peritoneal polymorphonuclear leukocytes stimulated with calcium ionophore A23187 (IC5012.7 µmol L?1). The distribution of eriocitrin in 39 citrus fruits was investigated by high‐performance liquid chromatography analysis. Lumie, eureka lemon (Citrus limon), Sambokan (Citrus sulcata), Sudachi (Citrus sudachi) and Koji (Citrus leiocarpa) fruits were found to contain high levels of eriocitrin in both peel and juice vesicles. Copyright © 2006 Society of Chemical Industry  相似文献   

16.
The effects of fumigating with 0, 10, 20, 30 μL L?1 nitric oxide (NO) gas and dipping in 0.5, 1.0 and 2.0 μmol L?1 NO aqueous solution on quality of kiwifruit (Actinidia Chinensis Planch cv Xuxiang) during storage at 20 °C were evaluated. It was found that fumigating with 20 μL L?1 NO gas and dipping in 1.0 μmol L?1 NO aqueous solution delayed firmness lost and increased SSC/TA ratios of kiwifruits. In comparison with the kiwifruits fumigated with 20 μL L?1 NO, the kiwifruits dipped in 1.0 μmol L?1 NO solution had slower ethylene production, lower contents of soluble solids and malondialdehyde (MDA), higher contents of vitamin C and E, but no significant difference existed in chlorophyll contents. The results suggested that dipping kiwifruits in 1.0 μmol L?1 NO aqueous solution was more effective in maintaining kiwifruits quality during 20 °C storage.  相似文献   

17.
BACKGROUND: A voltammetric study of vitamin E (DL‐ α‐tocopherol) detection using square wave stripping and cyclic voltammetry is discussed in this paper. The working sensor was made by mixing carbon nanotube powder with DNA (double‐stranded calf thymus DNA) and mineral oil. In this electrode, the anodic peak was obtained for ? 0.6 V in a 0.1 mol L?1 phosphate electrolyte solution. RESULTS: Under optimized stripping conditions, analytical linear working ranges of 0.5–4.0 µg L?1 and 40.0–160.0 µg L?1 were obtained. The RSD precision was pegged at 0.105% with seven points using an 80 µg L?1 spike. The detection limit (S/N) was found to be 0.056 µg L?1 (1.30 × 10?10 mol L?1). CONCLUSION: The developed method was found to be applicable to quality control analysis in the food, pharmaceutical and other manufacturing sectors. Copyright © 2008 Society of Chemical Industry  相似文献   

18.
BACKGROUND: The polysaccharides of Spirulina platensis possess many biological functions. Reproducing the conditions under which S. platensis produces polysaccharides is critical to furthering our understanding of the function of these polysaccharides for commercial mass production. The changes in microalgal polysaccharide production were studied under greenhouse and laboratory conditions using varying light intensities, temperatures, and NaCl concentrations. RESULTS: The polysaccharide yield was positively correlated with culturing under 192 µmol photons m?2 s?1 light intensity at 38 °C or in 0.75 mol L?1 NaCl. However, NaCl reduced the total biomass productivity of S. platensis. To mitigate the negative effects of environmental stress on maximal polysaccharide production, we proposed a two‐stage culture method. The first stage, designed to increase biomass production, involved culturing under 96 µmol photons m?2 s?1 light intensity at 28 °C. Following this, on achieving maximum biomass production, the second stage, designed to stimulate polysaccharide production, involved culturing under 192 µmol photons m?2 s?1 light intensity at 38 °C for 3 days or in a 0.75 mol L?1 NaCl medium for 2 days. High‐performance liquid chromatographic analysis revealed that S. platensis polysaccharides were composed of various monosaccharides, including glucose, galactose, rhamnose, mannose, fructose, and mannitol. CONCLUSION: The two‐stage culture can be successfully applied to achieve the goal of polysaccharide mass production. The first stage focuses on rapidly increasing microalgal biomass. The second stage of culture conditions requires modification to maximize polysaccharide yield. Copyright © 2011 Society of Chemical Industry  相似文献   

19.
BACKGROUND: L (+)‐Lactic acid is used in the pharmaceutical, textile and food industries as well as in the synthesis of biodegradable plastics. The aim of this study was to investigate the effects of different medium components added in cassava wastewater for the production of L (+)‐lactic acid by Lactobacillus rhamnosus B 103. RESULTS: The use of cassava wastewater (50 g L?1 of reducing sugar) with Tween 80 and corn steep liquor, at concentrations (v/v) of 1.27 mL L?1 and 65.4 mL L?1 respectively led to a lactic acid concentration of 41.65 g L?1 after 48 h of fermentation. The maximum lactic acid concentration produced in the reactor after 36 h of fermentation was 39.00 g L?1 using the same medium, but the pH was controlled by addition of 10 mol L?1 NaOH. CONCLUSION: The use of cassava wastewater for cultivation of L. rhamnosus is feasible, with a considerable production of lactic acid. Furthermore, it is an innovative proposal, as no references were found in the scientific literature on the use of this substrate for lactic acid production. Copyright © 2010 Society of Chemical Industry  相似文献   

20.
Hydrostatic pressure (HP) and heat treatments of myofibrillar proteins have both been shown to induce protein denaturation, but different gel formation properties result from these treatments. To characterise differences in the properties of proteins resulting from HP or heat treatment, Ca‐ and Mg‐ATPase activities (ATP, adenosine triphosphate) and protein solubility in 0.1 and 0.6 mol L?1 KCl buffers (pH 7) were evaluated in this study. The inactivation rate of Ca‐ATPase of myofibrillar proteins (Mf) induced by HP was slower than that of Mg‐ATPase at each of the tested pressures. However, the inactivation rate of Ca‐ATPase induced by heating was faster than that of Mg‐ATPase at each of the tested temperatures. The level of soluble proteins in Mf suspension induced by HP in 0.1 mol L?1 KCl buffer increased with increasing pressure up to 400 MPa and then decreased slightly at 500 MPa. However, the level of soluble proteins in Mf suspension induced by heat treatment in 0.1 mol L?1 KCl buffer increased with increasing temperature up to 55°C. According to the results of sodium dodecyl sulfate polyacrylamide gel electrophoresis, the levels of soluble myosin heavy chain and actin in Mf suspension induced by HP in 0.6 mol L?1 KCl buffer decreased simultaneously at pressures higher than 300 MPa. The level of soluble MHC in 0.6 mol L?1 KCl buffer decreased gradually with increasing temperature, but there were no changes in the level of soluble actin in 0.6 mol L?1 KCl buffer with increasing temperature up to 50°C. These results showed that the mechanism of HP‐induced protein denaturation was different from the mechanism underlying heat‐induced protein denaturation. Copyright © 2006 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号