首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 123 毫秒
1.
Connexin 46 (cx46), when expressed in Xenopus oocytes, not only forms typical gap junction channels between paired cells but also forms open gap junction hemichannels in the plasma membrane of single cells. The gap junction hemichannels share properties with complete gap junction channels in terms of permeability and gating. Here we characterize the gate that closes hemichannels in response to increased calcium concentration with whole-cell and single-channel records. The channels close within a narrow range of extracellular calcium concentrations (1-2 mM) which includes the calcium concentration prevailing in the primary site of cx46 expression, the lens. The effect of calcium on the channels is determined by voltage. A cysteine mutant of cx46, cx46L35C, was used to determine the localization of the gate. Experimental evidence suggests that position 35 is pore lining. The localization protocol tests the accessibility of position 35 for thiol reagents applied extra- or intracellularly to the channel closed by calcium. Channel closure by calcium excluded the thiol reagent from the outside but not from the inside. Consequently, the gate results in a regional closure of the pore and it is located extracellular to the position 35 of cx46. The present data also suggest that the cx46 gap junction hemichannel may exert a physiological function in the lens. Considering the association of calcium with cataract formation, it is feasible that misregulation of cx46 gap junction hemichannels could be a cause for cataract.  相似文献   

2.
Gap junction channels are formed by members of the connexin gene family and mediate direct intercellular communication through linked hemichannels (connexons) from each of two adjacent cells. While for most connexins, the hemichannels appear to require an apposing hemichannel to open, macroscopic currents obtained from Xenopus oocytes expressing rat Cx46 suggested that some hemichannels can be readily opened by membrane depolarization [Paul, D. L., Ebihara, L., Takemoto, L. J., Swenson, K. I. & Goodenough, D. A. (1991), J. Cell Biol. 115, 1077-1089]. Here we demonstrate by single channel recording that hemichannels comprised of rat Cx46 exhibit complex voltage gating consistent with there being two distinct gating mechanisms. One mechanism partially closes Cx46 hemichannels from a fully open state, gammaopen, to a substate, gammasub, about one-third of the conductance of gammaopen; these transitions occur when the cell is depolarized to inside positive voltages, consistent with gating by transjunctional voltage in Cx46 gap junctions. The other gating mechanism closes Cx46 hemichannels to a fully closed state, gammaclosed, on hyperpolarization to inside negative voltages and has unusual characteristics; transitions between gammaclosed and gammaopen appear slow (10-20 ms), often involving several transient substates distinct from gammasub. The polarity of activation and kinetics of this latter form of gating indicate that it is the mechanism by which these hemichannels open in the cell surface membrane when unapposed by another hemichannel. Cx46 hemichannels display a substantial preference for cations over anions, yet have a large unitary conductance (approximately 300 pS) and a relatively large pore as inferred from permeability to tetraethylammonium (approximately 8.5 angstroms diameter). These hemichannels open at physiological voltages and could induce substantial cation fluxes in cells expressing Cx46.  相似文献   

3.
Gap junctions regulate a variety of cell functions by creating a conduit between two apposing tissue cells. Gap junctions are unique among membrane channels. Not only do the constituent membrane channels span two cell membranes, but the intercellular channels pack into discrete cell-cell contact areas forming in vivo closely packed arrays. Gap junction membrane channels can be isolated either as two-dimensional crystals, individual intercellular channels, or individual hemichannels. The family of gap junction proteins, the connexins, create a family of gap junctions channels and structures. Each channel has distinct physiological properties but a similar overall structure. This review focuses on three aspects of gap junction structure: (1) the molecular structure of the gap junction membrane channel and hemichannel, (2) the packing of the intercellular channels into arrays, and (3) the ways that different connexins can combine into gap junction channel structures with distinct physiological properties. The physiological implications of the different structural forms are discussed.  相似文献   

4.
Most cells exchange ions and small metabolites via gap junction channels. These channels are made of two hemichannels (connexons), each formed by the radial arrangement of six connexin (Cx) proteins. Connexins span the bilayer four times (M1-M4) and have both amino- and carboxy-termini (NT, CT) at the cytoplasmic side of the membrane, forming two extracellular loops (E1, E2) and one inner (IL) loop. The channels are regulated by gates that close with cytosolic acidification (e.g., CO2 treatment) or increased calcium concentration, possibly via calmodulin activation. Although gap junction regulation is still unclear, connexin domains involved in gating are being defined. We have recently focused on the CO2 gating sensitivity of Cx32, Cx38 and various mutants and chimeras expressed in Xenopus oocytes and studied by double voltage clamp. Cx32 is weakly sensitive to CO2, whereas Cx38 is highly sensitive. A Cx32 chimera containing the second half of the inner loop (IL2) of Cx38 was as sensitive to CO2 as Cx38, indicating that this domain plays an important role. Deletion of CT by 84% did not affect CO2 sensitivity, but replacement of 5 arginines (R) with asparagines (N) at the beginning of CT (C1) greatly enhanced the CO2 sensitivity of Cx32. This suggests that whereas most of CT is irrelevant, positive charges of C1 maintain the CO2 sensitivity of Cx32 low. As a hypothesis we have proposed a model that involves charge interaction between negative residues of the beginning of IL (IL1) and positive residues of either C1 or IL2. Open and closed channels would result from IL1-C1 and IL1-IL2 interactions, respectively.  相似文献   

5.
The ability of certain connexins to form open hemichannels has been exploited to study the pore structure of gap junction (hemi)channels. Cysteine scanning mutagenesis was applied to cx46 and to a chimeric connexin, cx32E(1)43, which both form patent hemichannels when expressed in Xenopus oocytes. The thiol reagent maleimido-butyryl-biocytin was used to probe 12 cysteine replacement mutants in the first transmembrane segment and two in the amino-terminal segment. Maleimido-butyryl-biocytin was found to inhibit channel activity with cysteines in two equivalent positions in both connexins: I33C and M34C in cx32E(1)43 and I34C and L35C in cx46. These two positions in the first transmembrane segment are thus accessible from the extracellular space and consequently appear to contribute to the pore lining. The data also suggest that the pore structure is complex and may involve more than one transmembrane segment.  相似文献   

6.
In the adult rat hepatocyte, gap junction proteins consist of connexin 32 (Cx32) and connexin 26 (Cx26). Previously, we reported that both Cx32 and Cx26 were markedly induced and maintained in primary cultures of adult rat hepatocytes. The reappearing gap junctions were accompanied by increases in both the proteins and the mRNAs, and they were well maintained together with extensive gap junctional intercellular communication (GJIC) for more than 4 weeks. In the present study, we examined the cellular location of the gap junction proteins and the structures in the hepatocytes cultured in our system, using confocal laser microscopy and immunoelectron microscopy of cells processed for Cx32 and Cx26 immunocytochemistry and freeze-fracture analysis. In immunoelectron microscopy, the size of Cx32-immunoreactive gap junction structures on the plasma membrane increased with time of culture, and some of them were larger than those in liver sections in vivo. Freeze-fracture analysis also showed that the size of gap junction plaques increased and that the larger gap junction plaques were composed of densely packed particles. These results suggest that in this culture system, not only the synthesis of Cx proteins but also the size of the gap junction plaques was increased markedly. In the adluminal lateral membrane of the cells, Cx32-immunoreactive lines were observed and many small gap junction plaques were closely associated with a more developed tight junction network. In the basal region of the cells, small Cx32- and Cx26-immunoreactive dots were observed in the cytoplasm and several annular structures labeled with the antibody to Cx32 were observed in the cytoplasm. These results indicated the formation and degradation of gap junctions in the cultured hepatocytes.  相似文献   

7.
1. Gap junctions and junction-mediated cell-to-cell communications are obligatory features of gland cells, whatever their secretory product is. 2. Studies on pancreatic islets and acinar cells indicate that cell-to-cell communication via gap junction channels is required for proper biosynthesis, storage and release of both insulin and amylase. 3. However, the endocrine and exocrine portions of the pancreas show opposite connexin (Cx) and coupling changes in relation to the activation and inhibition of their secretory functions. 4. These differences may be accounted for by the expression of Cx43 in pancreatic islets and of Cx26 and Cx32 in pancreatic acini. This alternative expression of connexin isoforms is also found in several other endocrine and exocrine glands. 5. These observations indicate that connexin-made channels play a central role in the control of secretory events.  相似文献   

8.
9.
Connexins are gap junction proteins that form aqueous channels to interconnect adjacent cells. Rat osteoblasts express connexin43 (Cx43), which forms functional gap junctions at the cell surface. We have found that ROS 17/2.8 osteosarcoma cells, UMR 106-01 osteosarcoma cells, and primary rat calvarial osteoblastic cells also express another gap junction protein, Cx46. Cx46 is a major component of plasma membrane gap junctions in lens. In contrast, Cx46 expressed by osteoblastic cells was predominantly localized to an intracellular perinuclear compartment, which appeared to be an aspect of the TGN as determined by immunofluorescence colocalization. Hela cells transfected with rat Cx46 cDNA (Hela/Cx46) assembled Cx46 into functional gap junction channels at the cell surface. Both rat lens and Hela/Cx46 cells expressed 53-kD (nonphosphorylated) and 68-kD (phosphorylated) forms of Cx46; however, only the 53-kD form was produced by osteoblasts. To examine connexin assembly, monomers were resolved from oligomers by sucrose gradient velocity sedimentation analysis of 1% Triton X-100-solubilized extracts. While Cx43 was assembled into multimeric complexes, ROS cells contained only the monomer form of Cx46. In contrast, Cx46 expressed by rat lens and Hela/Cx46 cells was assembled into multimers. These studies suggest that assembly and cell surface expression of two closely related connexins were differentially regulated in the same cell. Furthermore, oligomerization may be required for connexin transport from the TGN to the cell surface.  相似文献   

10.
Connexin mutations in X-linked Charcot-Marie-Tooth disease   总被引:2,自引:0,他引:2  
X-linked Charcot-Marie-Tooth disease (CMTX) is a form of hereditary neuropathy with demyelination. Recently, this disorder was mapped to chromosome Xq13.1. The gene for the gap junction protein connexin32 is located in the same chromosomal segment, which led to its consideration as a candidate gene for CMTX. With the use of Northern (RNA) blot and immunohistochemistry technique, it was found that connexin32 is normally expressed in myelinated peripheral nerve. Direct sequencing of the connexin32 gene showed seven different mutations in affected persons from eight CMTX families. These findings, a demonstration of inherited defects in a gap junction protein, suggest that connexin32 plays an important role in peripheral nerve.  相似文献   

11.
The importance of intercellular communication to complex cellular processes such as development, differentiation, growth, propagation of electrical impulses and diffusional feeding has long been appreciated. The realization that intercellular communication is mediated by gap junction channels, which are in turn comprised of a diverse family of proteins called the connexins, has provided new tools and avenues for studying the role of intercellular communication in these important cellular processes. The identification of different connexin isoforms has not only enabled the development of specific reagents to study connexin expression patterns, but has also allowed the functional properties of the different connexin isoforms and how they interact with each other, to be explored. Increasingly, the knowledge gained from studying connexin diversity is being used to investigate the role played by gap junction channels in a number of diseases. In this article we highlight selected cases where gap junction channels have been shown or are believed to be directly involved in the disease process.  相似文献   

12.
Trypanosoma cruzi and Toxoplasma gondii are protozoan parasites capable of causing infections of the nervous system. In order to determine effects of infection by these organisms on intercellular communication in the brain, dye coupling and connexin abundance and distribution were examined in leptomeningeal cells and astrocytes infected with T. cruzi or T. gondii. For both cell types infected with either type of protozoan parasite, intercellular diffusion of intracellularly injected Lucifer Yellow was dramatically reduced. Immunocytochemistry with antibodies specific for connexin43 (in astrocytes) or both connexin43 and connexin26 (for leptomeningeal cells) demonstrated that punctate gap junctional staining was much reduced in infected cells, although uninfected neighbors could display normal connexin abundance and distribution. Western blot analyses revealed that connexin43 abundance in both cell types infected with either parasite was similar to that in uninfected cells. Phosphorylation state of connexin43 (inferred from electrophoretic mobility of connexin43 isoforms) was not significantly affected by the infection process. Immunocytochemistry of whole brains from animals acutely infected with either parasite also showed a marked reduction in connexin43 expression. We conclude that infection of both types of brain cells with either protozoan parasite results in a loss of intercellular communication and organized gap junction plaques without affecting expression levels or posttranslational processing of gap junction proteins. Presumably, these changes in gap junction distribution result from altered targeting of the junctional protein to the plasma membrane, and/or from changes in assembly of subunits into functional channels.  相似文献   

13.
The cytoplasmic calcium environments along membrane trafficking pathways leading to gap junction intercellular communication channels at the plasma membrane were studied. Connexins, the constitutive proteins of gap junctions, were fused at their carboxyl terminus to the calcium-sensitive photoprotein aequorin. The cellular location of the chimeric proteins was determined by immunolocalization and subcellular fractionation. The generation of functional gap junctions by the connexin chimerae was monitored by the ability of the cells to exchange small dyes. Although aequorin fused to connexin-26 was nonfunctional, its ability to report Ca2+ and to form functional gap junctions was rescued by replacement of its cytoplasmic carboxyl tail with that of connexin-43. In COS-7 cells expressing these connexin-aequorin chimerae, calcium levels below the plasma membrane were higher (approximately 5 microM) than those in the cytoplasm (approximately 100 nM); gap junctions were able to transfer dyes under these conditions. Cytoplasmic levels of free calcium surrounding the ERGIC/Golgi reported by connexin-43 chimera (approximately 420 nM) were twice those measured by connexin-32 chimera (approximately 200 nM); both chimerae measured calcium levels substantially higher than those reported by a connexin-26 chimera (approximately 130 nM). Dispersion of the ERGIC and Golgi complex by brefeldin A led to a marked reduction in calcium levels. The results show that the various connexin chimerae were located in spatially different subcellular stores and that the ERGIC/Golgi regions of the cell maintain heterogeneous cytoplasmic domains of calcium. The implications of the subplasma-membrane Ca2+ levels on the gating of gap junctions are discussed.  相似文献   

14.
Intercellular communication may be modulated by the rather rapid turnover and degradation of gap junction proteins, since many connexins have half-lives of 1-3 h. While several morphological studies have suggested that gap junction degradation occurs after endocytosis, our recent biochemical studies have demonstrated involvement of the ubiquitin-proteasome pathway in proteolysis of the connexin43 polypeptide. The present study was designed to reconcile these observations by examining the degradation of connexin43-containing gap junctions in rat heart-derived BWEM cells. After treatment of BWEM cells with Brefeldin A to prevent transport of newly synthesized connexin43 polypeptides to the plasma membrane, quantitative confocal microscopy showed the disappearance of immunoreactive connexin43 from the cell surface with a half-life of approximately 1 h. This loss of connexin43 immunoreactivity was inhibited by cotreatment with proteasomal inhibitors (ALLN, MG132, or lactacystin) or lysosomal inhibitors (leupeptin or E-64). Similar results were seen when connexin43 export was blocked with monensin. After treatment of BWEM cells with either proteasomal or lysosomal inhibitors alone, immunoblots showed accumulation of connexin43 in both whole cell lysates and in a 1% Triton X-100-insoluble fraction. Immunofluorescence studies showed that connexin43 accumulated at the cell surface in lactacystin-treated cells, but in vesicles in BWEM cells treated with lysosomal inhibitors. These results implicate both the proteasome and the lysosome in the degradation of connexin43-containing gap junctions.  相似文献   

15.
16.
The signals regulating ovarian follicle development and the mechanisms by which they are communicated are largely undefined. At birth, the ovary contains primordial follicles consisting of meiotically arrested oocytes surrounded by a single layer of supporting (granulosa) cells. Periodically, subsets of primordial follicles undergo further development during which the oocyte increases in size and the granulosa cells proliferate, stratify and develop a fluid-filled antrum. After ovulation, oocytes resume meiosis and granulosa cells retained in the follicle differentiate into steroidogenic cells, forming the corpus luteum. It has been proposed that intercellular signalling through gap junction channels may influence aspects of follicular development. Gap junctions are aggregations of intercellular channels composed of connexins, a family of at least 13 related proteins that directly connect adjacent cells allowing the diffusional movement of ions, metabolites, and other potential signalling molecules. Here we show that connexin 37 is present in gap junctions between oocyte and granulosa cells and that connexin 37-deficient mice lack mature (Graafian) follicles, fail to ovulate and develop numerous inappropriate corpora lutea. In addition, oocyte development arrests before meiotic competence is achieved. Thus, cell-cell signalling through intercellular channels critically regulates the highly coordinated set of cellular interactions required for successful oogenesis and ovulation.  相似文献   

17.
To examine the potential of cytoplasmic portions ("tails") of desmosomal cadherins for assembly of desmosome plaque structures and anchorage of intermediate filaments (IFs), we transfected cultured human A-431 carcinoma cells, abundant in desmosomes and cytokeratin IFs, with constructs encoding chimeric proteins in which the transmembranous region of connexin 32 had been fused with tails of desmocollin (Dsc) or desmoglein (Dsg). The results show that the tail of the long splice form a of Dsc, but not its shorter splice form b, contains sufficient information to recruit desmoplakin and plakoglobin to connexon membrane paracrystals (gap junctions) and to form a novel kind of plaque at which cytokeratin IFs attach. By contrast, chimeras containing a Dsg tail, which accumulated in the plasma membrane, showed a dominant-negative effect: they not only were unable to form gap junction structures and plaques but also led to the disappearance of all endogenous desmosomes and the detachment of IFs from the plasma membrane.  相似文献   

18.
A series of cells representing normal, non-tumorigenic cell lines, as well as differentiating neoplastic and undifferentiated neoplastic rat tracheal epithelial cell populations were evaluated for their ability to establish homologous and/or heterologous cell-cell gap junction communication in culture. Gap junction communication was evaluated by flow cytometric quantitation of the transfer of the fluorescent dye calcein from a donor to a recipient cell population via gap junctions. The data indicate that normal primary cultures of rat tracheal epithelial cells, as well as non-tumorigenic cell lines and squamous cell carcinomas cell populations, retain the ability to establish both homologous and heterologous gap junction communication. In all cases an average of >48% of recipient cells had acquired calcein label during a 5-h interval of co-culture of donor and recipient cells at confluent densities. Cells harvested directly from squamous cell carcinoma tumors exhibited similar levels of cell-cell communication. In contrast, cells giving rise to undifferentiated carcinomas, as well as cells harvested from undifferentiated carcinomas, exhibited very low levels or no homologous or heterologous cell-cell communication. Cell populations exhibiting distinctly different communication phenotypes were evaluated by Northern blot analysis for expression of connexins (Cx 26, 32 and 43) and E-cadherin. Neither communicating nor non-communicating cells expressed connexin 32. Those cell populations, which established functional gap junctions, expressed E-cadherin as well as connexin 26 and/or 43. In contrast, those cell populations that lacked the ability to communicate universally lacked expression of E-cadherin, and a quarter also lacked expression of detectable levels of connexin.  相似文献   

19.
Gap junctions mediate cell-cell communication in almost all tissues, but little is known about their regulation by physiological stimuli. Using a novel single-electrode technique, together with dye coupling studies, we show that in cells expressing gap junction protein connexin43, cell-cell communication is rapidly disrupted by G protein-coupled receptor agonists, notably lysophosphatidic acid, thrombin, and neuropeptides. In the continuous presence of agonist, junctional communication fully recovers within 1-2 h of receptor stimulation. In contrast, a desensitization-defective G protein-coupled receptor mediates prolonged uncoupling, indicating that recovery of communication is controlled, at least in part, by receptor desensitization. Agonist-induced gap junction closure consistently follows inositol lipid breakdown and membrane depolarization and coincides with Rho-mediated cytoskeletal remodeling. However, we find that gap junction closure is independent of Ca2+, protein kinase C, mitogen-activated protein kinase, or membrane potential, and requires neither Rho nor Ras activation. Gap junction closure is prevented by tyrphostins, by dominant-negative c-Src, and in Src-deficient cells. Thus, G protein-coupled receptors use a Src tyrosine kinase pathway to transiently inhibit connexin43-based cell-cell communication.  相似文献   

20.
OBJECTIVE: The electrophysiologic properties of gap junctions between human myometrial smooth muscle cells were studied. STUDY DESIGN: Double whole-cell patch clamp recordings were made on pairs of cells from primary cultures of myometrial cells from women undergoing cesarean section. Macroscopic gap junction currents were measured as the change in current in a cell held at a constant voltage while the other member of a pair was subjected to a test pulse of voltage. The blockade by halothane was examined. RESULTS: Mean junctional conductance between pairs of cells was 23 +/- 14 nanosiemens (n = 57). Instantaneous gap junction conductance was constant as a function of transjunctional voltage. For transjunctional voltages of < or = 50 mV, currents were constant during a 5-second test pulse. For larger voltages, however, the currents showed a time-dependent decay. The currents were blocked completely and reversibly with 3.5 mmol/L halothane. Single-channel conductances of 60 picosiemens and 15 picosiemens were observed. CONCLUSION: This first study of gap junction currents in human myometrial cells confirms that connexin43 is the major functional constituent. Functional studies of myometrial gap junction channels may suggest new strategies for controlling uterine contractility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号