首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wireless Body Area Networks (WBANs) comprise various sensors to monitor and collect various vital signals, such as blood pressure, pulse, heartbeat, body temperature, and blood sugar. A dense and mobile WBAN often suffers from interference, which causes serious problems, such as wasting energy and degrading throughput. In reality, not all of the sensors in WBAN need to be active at the same time. Therefore, they can be divided into different groups so that each group works in turn to avoid interference. In this paper, a Nest-Based WBAN Scheduling (NBWS) algorithm is proposed to cluster sensors of the same types in a single or multiple WBANs into different groups to avoid interference. Particularly, we borrow the graph coloring theory to schedule all groups to work using a Time Division for Multimodal Sensor (TDMS) group scheduling model. Both theoretical analysis and experimental results demonstrate that the proposed NBWS algorithm performs better in terms of frequency of collisions, transmission delay, system throughput, and energy consumption compared to the counterpart methods.  相似文献   

2.
The use of wireless body area networks (WBANs) in healthcare applications has made it convenient to monitor both health personnel and patient status continuously in real time through wearable wireless sensor nodes. However, the heterogeneous and complex network structure of WBANs has some disadvantages in terms of control and management. The software‐defined network (SDN) approach is a promising technology that defines a new design and management approach for network communications. In order to create more flexible and dynamic network structures in WBANs, this study uses the SDN approach. For this, a WBAN architecture based on the SDN approach with a new energy‐aware routing algorithm for healthcare architecture is proposed. To develop a more flexible architecture, a controller that manages all HUBs is designed. The proposed architecture is modeled using the Riverbed Modeler software for performance analysis. The simulation results show that the SDN‐based structure meets the service quality requirements and shows superior performance in terms of energy consumption, throughput, successful transmission rate, and delay parameters according to the traditional routing approach.  相似文献   

3.
A wireless body area network (WBAN) enables the continuous monitoring of health conditions including heart rate, temperature, and glucose levels. It is composed of several sensors that are placed on the body. The network's performance is significantly affected by the unpredictable movements of the human body. Due to the varying proximities between them, the existence of several WBANs creates a challenge when mobility is involved. In this fictitious scenario, we consider a park area with both mobile and static WBANs or WBAN-equipped individuals passing through the park who have varying degrees of mobility. When a mobile WBAN passes a static WBAN and is within a minimum distance of the static WBAN, they pair up and immediately interfere. Inter-interference caused by WBANs operating in a limited area causes packet loss and performance deterioration. In this work, static WBAN locations are optimised to minimise interference and system inter-interference problems are addressed by a game theoretic method. This paper formulates a flexible game theoretic framework to study WBAN coexistence using the expected pay-off function considering a two-player game. It is observed from the results obtained that the probability of interference caused by fast mobile WBANs is reduced to a maximum of 50% compared with that caused by slow mobile WBANs thereby reducing the need for relocation of static WBANs.  相似文献   

4.
A novel ultra‐wideband (UWB) transceiver structure is presented to be used in wireless body area networks (WBANs). In the proposed structure, a data channel and a control channel are combined into a single transmission signal. In the signal, a modulation method mixing pulse position modulation and pulse amplitude modulation is proposed. A mathematical framework calculating the power spectrum density of the proposed pulse‐based signal evaluates its coexistence with conventional radio systems. The transceiver structure is discussed, and the receiving performance is investigated in the additive white Gaussian noise channel. It is demonstrated that the proposed scheme is easier to match to the UWB emission mask than conventional UWB systems. The proposed scheme achieves the data rate requirement of WBAN; the logical control channel achieves better receiving performance than the logical data channel, which is useful for controlling and maintaining networks. The proposed scheme is also easy to implement.  相似文献   

5.

Real-time continuous and remote health monitoring has become widespread due to the developments in Wireless body area networks (WBANs). Based on the criticality of health data to be transmitted, regular healthcare data and critical emergency health data must be provided differential service. In this paper, we consider the beyond WBAN communication in a system comprising multiple WBANs with different quality of service (QoS) requirements and multiple access points (APs), and propose two hybrid approaches for resource allocation. In the first approach, the AP association to the WBANs and channel allocation to the APs are done jointly and is modelled as an optimization problem, which is computationally complex and it also requires global network information. In order to reduce the involvement of APs in making decisions for resource allocations of WBANs, the problem is reformulated as a Stackelberg game with price update, which guarantees QoS of the critical users. A learning based algorithm, namely distributed learning for Pareto optimality, is used by the normal users, in this second approach. The performance of both the proposed approaches are evaluated and compared, in terms of the throughput of the critical and normal users as well as the QoS guarantee of the critical users.

  相似文献   

6.
A wireless body area network (WBAN) is a radio‐frequency‐based wireless communication technology that consists of a number of different sensor and actuator nodes interconnected with a body gateway. Considering the constrained resources in WBAN devices, simple and noise‐robust synchronization algorithms are required. Frame synchronization and frequency offset estimation are extremely important in the design of a robust WBAN receiver. In this paper, a detection strategy such as frame synchronization and frequency estimation is described in the WBAN system, which can improve the receiver performance. In doing so, algorithms are designed or chosen for the frame detection, carrier frequency offset synchronization, and joint fine‐time and phase‐offset estimation by exploiting the spike‐like property of the physical layer convergence protocol preamble and the frame structure in the WBAN system. The performance of the WBAN synchronization receiver is verified by computer simulation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
A survey on wireless body area networks   总被引:4,自引:0,他引:4  
The increasing use of wireless networks and the constant miniaturization of electrical devices has empowered the development of Wireless Body Area Networks (WBANs). In these networks various sensors are attached on clothing or on the body or even implanted under the skin. The wireless nature of the network and the wide variety of sensors offer numerous new, practical and innovative applications to improve health care and the Quality of Life. The sensors of a WBAN measure for example the heartbeat, the body temperature or record a prolonged electrocardiogram. Using a WBAN, the patient experiences a greater physical mobility and is no longer compelled to stay in the hospital. This paper offers a survey of the concept of Wireless Body Area Networks. First, we focus on some applications with special interest in patient monitoring. Then the communication in a WBAN and its positioning between the different technologies is discussed. An overview of the current research on the physical layer, existing MAC and network protocols is given. Further, cross layer and quality of service is discussed. As WBANs are placed on the human body and often transport private data, security is also considered. An overview of current and past projects is given. Finally, the open research issues and challenges are pointed out.  相似文献   

8.
为解决无线体域网(Wireless Body Area Networks,WBAN)在人体运动过程中网络拓扑结构频繁变化导致链路质量和WBAN性能下降等问题,首先根据人体结构对WBAN网络拓扑进行优化,通过添加中继节点建立WBAN主干网,提供节点和hub之间相对稳定的链接,然后提出了适用于WBAN拓扑优化后的路由策略(Routing Protocol Based on Topology Optimization and Link Awareness,R-TOLA)。R-TOLA综合了链路质量感知和代价函数,通过调整主干网中继和节点中继获得最优化路径。仿真实验表明,基于拓扑结构优化和链路感知的R-TOLA协议和其他路由协议相比,在人体拓扑网络结构频繁变化的环境下具有网络生存时间更长、吞吐量更大等优势。  相似文献   

9.
Wireless body area networks (WBANs) in the industrial, scientific, and medical (ISM) bands have been increasingly adopted for various medical applications. Due to the shared nature of the ISM bands, when a WBAN coexists with a wireless local area network (WLAN), performance of WBAN may significantly degrade because of asymmetric attributes between WBAN and WLAN such as transmit power and response time. In this paper, we propose a novel channel access protocol for achieving effective channel sharing in the aspect of efficiency and fairness, which adaptively controls the contention window size of WLAN based on the delay information of WBAN. Our extensive simulation results for real-time electrocardiogram (ECG) monitoring show that the proposed scheme can guarantee the required quality of service of WBAN while insignificant degradation of WLAN performance.  相似文献   

10.
Yan Zhang  Guido Dolmans 《电信纪事》2011,66(3-4):229-241
The newly emerging wireless body area networks (WBANs) are intended to support both medical applications and consumer electronic (CE) applications. These two types of applications present diverse service requirements. To satisfy both medical and CE applications with a uniform medium access control (MAC) protocol becomes a new challenge for the WBAN. Addressing this problem, a priority-guaranteed MAC protocol is proposed in this paper. In this protocol, data channels are separated from control channels to support collision-free high data rate communication for CE applications. Priority-specific control channels are adopted to provide priority guarantee to life-critical medical applications. Traffic-specific data channels are deployed to improve resource efficiency and latency performance. Moreover, in order to further minimize energy consumption and access latency, an asynchronous wakeup trigger mode is proposed as an enhancement to the priority traffic. Monte Carlo simulations are carried out for performance evaluation. As compared with IEEE 802.15.4 MAC and its improved versions, the priority-guaranteed MAC demonstrates significant improvements on throughput and energy efficiency with a tolerable penalty on latency performance of bursty traffic in CE applications. Therefore, the customized priority-guaranteed MAC satisfies the service requirements of WBAN by making tradeoff among the performances of different applications.  相似文献   

11.
The major challenge in wireless body area networks (WBAN) is setting up a protected communication between data consumers and a body area network controller while meeting the security and privacy requirements. This paper proposes efficient and secure data communication in WBANs using a Twofish symmetric algorithm and ciphertext‐policy attribute‐based encryption with constant size ciphertext; in addition, the proposed scheme incorporates policy updating to update access policies. To the best of the author's knowledge, policy updating in WBAN has not been studied in earlier works. The proposed scheme is evaluated in terms of message size, energy consumption, and computation cost, and the results are compared with those of existing schemes. The result shows that the proposed method can achieve higher efficiency than conventional methods.  相似文献   

12.
In this paper, we address the problem of interference when multiple time division multiple access‐based wireless body area networks (WBANs) come in the proximity of one another. We propose a simple solution that creates common non‐conflicting schedule between these interfering WBANs. Our proposed scheme allows the reuse of maximum possible time slots among WBANs that are two‐hop neighbors of one another. A flow admission control scheme is applied to control the flows during the period of interference. We show that the percentage of flows admitted because of flow control decreases with the increase in the network size and flow rate. We simulated a scenario where WBANs move randomly within a simulation area with a certain speed and meet at a particular point. We show that the signal to interference noise ratio (SINR) value of WBANs changes as long as they are within the transmission range of one another. Also, we show that the exchanges of common schedule (which is dependent on the number of times the SINR value drops below the threshold) are required in order to improve the packet delivery ratio in WBANs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
In this work, we develop a prioritized bridging mechanism between the IEEE 802.15.6‐based wireless body area networks (WBANs) and the IEEE 802.11e enhanced distributed channel access (EDCA)‐based wireless local area network (WLAN) to convey the medical data to the medical center. We map the eight WBAN user priorities (UPs) into the four WLAN access categories (ACs) to provide the required quality of service and prioritization for the health variables generated by the WBAN nodes. By assignment of WBAN UPs with default medium access control parameters to eight different medical data streams and under the presence of ordinary nodes, we investigate the impact of WLAN AC differentiation by arbitrary inter‐frame space (AIFS) and contention window (CW) on performance of medical and regular nodes’ data streams. The results of this work indicate that the AC differentiation by AIFS outperforms the differentiation by CW in the sense that it does not deteriorate the end‐to‐end delay of relayed WBAN traffic and ordinary WLAN traffic.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
The paper proposes a scheme on constructing a vehicular ad‐hoc network based on cluster chains. In the cluster construction algorithm, the distance from a potential cluster head to its neighbor cluster associate node is used as a metric to elect a cluster head, so the number of the cluster heads is minimized. In the cluster‐chain construction algorithm, the distance from a potential cluster associate node to its neighbor cluster head is used as a metric to elect a cluster associate node, so the number of the nodes in a cluster chain is minimized. The cluster/cluster‐chain repair algorithm maintains the cluster/cluster‐chain stability. The cluster/cluster‐chain merging algorithm has no effects on the topology of the corresponding cluster chains, so the cluster‐chain stability is enhanced. The performances of the proposed scheme and the existing scheme are analyzed, and the performance parameters include the cluster size, the cluster formation delay, the cluster stability, and the cluster‐chain stability. And the analytical results show that the performance of the proposed scheme is better. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
To monitor the functions of human body and their surroundings Wireless Body Area Network (WBAN) is used, which are based on low powered and light weight wireless sensors devices. WBAN highly supports numerous applications but this study will focus on the security of ubiquitous healthcare applications. In E-health research monitoring the critical data in terms of security has become a major challenge as WBAN deals with various threats day by day. Therefore the design of secure and reasonably resource optimal algorithms with a robust key generation and management scheme is today’s need. There must be only authorized user’s who can have access to patient related data; otherwise it can be exploited by anyone. This proposed study is aiming to formulate the two security suite for WBAN, which comprises on KBS keys, KAISC and Hash algorithm three improved versions of key management procedures and authentication procedure respectively. Firstly the KBS Keys and improved Hashing suite which is an independent and adaptive key management and authentication scheme for improving the security of WBANs will be used, and secondly KAISC will be used for inter-sensor communication and key management security scheme. All above mentioned procedures will be suitably blend with the encryption and decryption process which will securely send the patient’s critical data to the base station and further to the concerned doctor. The novelty of work is that the proposed methodology is not only simple but also advanced and much secured procedure of key generation and management that will be further validated by the performance analysis. This technique will be beneficial for the continuous monitoring of patient’s critical data in remote areas also.  相似文献   

16.
无线体域网旨在提供实时的、无处不在的人体监测来执行独立的早期预测、诊断和身体跟踪响应的护理,并日渐成为研究和应用的热点。随着WBAN在人类日常生活中的重要性日趋突出,专用于无线体域网的标准IEEE802.15.6于2012年颁布。本文主要针对多个体域网网间和单个体域网内部的资源分配进行研究,考虑WBAN的异质性以及传感器节点的异质性,同时对体域网资源分配的研究现状和不足进行分析和总结。最后,分析了无线体域网资源分配需要解决的问题和未来研究的方向。  相似文献   

17.
In this paper, we investigate the energy efficiency of an incremental relay based cooperative communication scheme in wireless body area networks (WBANs). We derive analytical expressions for the energy efficiency of direct and cooperative communication schemes taking into account the effect of packet error rate. The following communication scenarios specific to a WBAN are considered: (i) in‐body communication between an implant sensor node and the gateway, and (ii) on‐body communication between a body surface node and the gateway with line‐of‐sight (LOS) and non‐LOS channels. The results reveal a threshold behavior that separates regions where direct transmission is better from regions where incremental relay cooperation is more useful in terms of energy efficiency. It is observed that, compared with direct communication, incremental relay based cooperative communication schemes improves the energy efficiency significantly. Further, cooperation extends the source‐to‐destination hop length over, which energy efficient communication can be achieved as compared with direct communication. We also observe that, for both direct as well as cooperative transmission schemes in error prone channels, an optimal packet size exists that result in maximum energy efficiency. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Wireless body area networks (WBAN) is a wireless network of sensors placed in and around the human body for monitoring the patient conditions remotely. The goal of WBAN networks is to report the patient condition to the monitoring system with maximum reliability and minimum delay and deliver the life critical data in the emergency situation with utmost priority. The proposed MAC protocol is aimed at delivery of emergency packets with maximum reliability and minimum delay through the introduction of mini slots in the beacon enabled superframe for exclusive transmission of the same. To improve the packet delivery ratio of the normal packets and decrease the energy consumption of the low data rate nodes, a packet rate based scheduled slot allocation is added to this protocol. Extensive simulations show that the proposed protocol is able to achieve nearly 98% packet delivery ratio and less than 100 ms delay for emergency packets. By varying the number of allocated scheduled slots based on the packet rate of the nodes, the proposed protocol has shown improved performance in the packet delivery ratio (93%) of normal packets as compared to IEEE 802.15.6 (85%), also the energy consumption of low data rate nodes has decreased by 64%. The results show that the proposed protocol is successful in realizing much better delay and packet delivery values for emergency and normal packets.  相似文献   

19.
Clustering is one of the essential operations in wireless sensor network (WSN) to ensure organized data aggregation followed by energy efficiency. However, obtaining optimal clustering performance is yet an unsolved problem in WSN. Review of existing approaches towards cluster optimization shows that effective balance between energy efficiency and topology control is still missing. Therefore, the proposed system presents a unique topology control mechanism using a novel concept of interstellar orientation toward optimizing the clustering performance in WSN. Adopting an analytical research methodology, the proposed system introduces two interstellar‐based topology control system, which targets the maximum saving of resource consumption of the cluster head. The simulated outcome of the study shows that the proposed topology control system offers significant energy conservation performance in comparison to the existing hierarchical clustering scheme in WSN.  相似文献   

20.

Over the years, the performance of devices used to gather sensitive medical information about individuals has increased substantially. These include implanted devices in the body, placed on or around the body, creating a Wireless body area network. Security and privacy have been a greater concern over a period of time due to the sensitive nature of the data collected and transmitted by the network. It has been noticed that various techniques have been applied to secure the data and provide privacy in WBANs but with a tradeoff of execution overhead. Although the latest available anonymous authentication schemes provide privacy and security but due to the limited computation capacity of WBAN devices, these schemes show greater time cost for authentication and consume more processing time. We review two latest anonymous authentication schemes for the WBAN environment in terms of computation cost. These two schemes provide anonymous authentication and use encryption to secure the data and ensure privacy. Then we analyze a recent lightweight authentication scheme proposed for wearable devices which provides anonymity and privacy along with security with very low computation cost. This scheme uses hash functions in order to obtain authentication and anonymity and doesn’t use encryption in the authentication process. This scheme is not proposed for the WBAN environment, but it can be applied on the WBAN environment with necessary variations. The comparison of these available schemes shows clearly that the computation cost is considerably decreased by applying the latest authentication scheme in the WBAN environment. We propose a new authentication scheme for the WBAN environment based on the light-weight scheme proposed for wearable devices. The detailed analysis shows that our proposed scheme minimizes the computation cost and maintains the privacy and security along with anonymous authentication.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号