首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Cloud computing provides high accessibility, scalability, and flexibility in the era of computing for different practical applications. Internet of things (IoT) is a new technology that connects the devices and things to provide user required services. Due to data and information upsurge on IoT, cloud computing is usually used for managing these data, which is known as cloud‐based IoT. Due to the high volume of requirements, service diversity is one of the critical challenges in cloud‐based IoT. Since the load balancing issue is one of the NP‐hard problems in heterogeneous environments, this article provides a new method for response time reduction using a well‐known grey wolf optimization algorithm. In this paper, we supposed that the response time is the same as the execution time of all the tasks that this parameter must be minimized. The way is determining the status of virtual machines based on the current load. Then the tasks will be removed from the machine with the additional load depending on the condition of the virtual machine and will be transferred to the appropriate virtual machine, which is the criterion for assigning the task to the virtual machine based on the least distance. The results of the CloudSim simulation environment showed that the response time is developed in compared to the HBB‐LB and EBCA‐LB algorithm. Also, the load imbalancing degree is improved in comparison to TSLBACO and HJSA.  相似文献   

2.
This paper deals with the lifetime problem in the Internet of Things. We first propose an efficient cluster‐based scheme named “Cuckoo‐search Clustering with Two‐hop Routing Tree (CC‐TRT)” to develop a two‐hop load‐balanced data aggregation routing tree in the network. CC‐TRT uses a modified energy‐aware cuckoo‐search algorithm to fairly select the best cluster head (CH) for each cluster. The applied cuckoo‐search algorithm makes the CH role to rotate between different sensors round by round. Subsequently, we extend the CC‐TRT scheme to present two methods for constructing multi‐hop data aggregation routing trees, named “Cuckoo‐search Clustering with Multi‐Hop Routing Tree (CC‐MRT)” and “Cuckoo‐search Clustering with Weighted Multi‐hop Routing Tree (CC‐WMRT).” Both CC‐MRT and CC‐WMRT rely on a two‐level structure; they not only use an energy‐aware cuckoo‐search algorithm to fairly select the best CHs but also adopt a load‐balanced high‐level routing tree to route the aggregated data of CHs to the sink node. However, CC‐WMRT slightly has a better performance thanks to its low‐level routing strategy. As an advantage, the proposed schemes balance the energy consumption among different sensors. Numerical results show the efficiency of the CC‐TRT, CC‐MRT, and CC‐WMRT algorithms in terms of the number of transmissions, remaining energy, energy consumption variance, and network lifetime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号