首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
利用压电振动能量收集技术具有的力-电耦合效应高,无电磁干扰,机构简单等特点,该文提出了一种对称式自供电同步电荷提取电路(SSP-SECE),使用互补三极管实现同步开关控制,通过导向二极管与检测电容可实现峰值自检测。使用Multisim软件建模仿真测试了电路方案的合理性,实验验证了电路的有效性。实验结果表明,采用优化设计的SSP-SECE接口电路使负载电阻功率比标准能量采集电路高约4.23倍,相对于SECE电路整体提升了23.02%。  相似文献   

2.
压电能量采集器能把环境振动能转换为电能,该文基于如何将压电能量采集器转化电能最大化提取的研究,提出了一种压电能量采集器高效能量提取接口电路,采用有源二极管整流电路降低了整流过程中的导通压降损耗,电感同步开关电荷提取电路有效提取了寄生电容中储存的电能。利用华虹宏力0.11 μm CMOS工艺进行电路设计和版图布局。测试结果表明,接口电路可提取80.4%寄生电容中存储的电能,20 kΩ电阻负载下导通压降为20.2 mV,在加速度5g(g=9.8 m/s2)和频率40 Hz条件下平均提取功率是标准接口电路的2.58倍。该芯片可应用于基于振动能供电的无线无源传感节点等领域。  相似文献   

3.
本文提出了一种基于同步电荷提取的高效多压电能俘获电路(High Efficiency Multi-piezoelectric Energy Harvesting Circuit Based on Synchronous Electric Charge Extraction,EM-SECE).所提出的电路利用改进的正负峰...  相似文献   

4.
为了给无线传感器网络节点提供稳定、高效且长期的能量供给,该文提出了一种基于增强型同步电荷提取电路的压电能量收集接口电路(ESECE)。利用Multisim电路仿真软件对增强型同步电荷提取电路进行仿真,并与标准压电能量收集接口电路(SHE)和同步电荷提取电路(SECE)进行对比分析。实验结果表明,在相同激励条件下,ESECE比SECE的输出功率提高了近30%,最大输出功率达到190μW,同时还保证了输出功率与负载电阻的无关性。  相似文献   

5.
能量采集效率是引信微环音振荡压电发电机能否得到应用的关键之一。在经典能量采集电路和填谷能量采集电路的基础上,采用同步电荷能量采集法,基于脉冲宽度调制技术,设计了一种较高能量采集效率的同步电荷能量采集电路,由微动开关精确控制转移电能时间。理论分析和实验模拟的结果表明,开关精确控制转移电能时间的同步电荷能量采集电路,其输出功率最大且与负载无关,这将有利于微环音振荡压电发电机在不同型号引信中的应用。  相似文献   

6.
介绍了基于压电效应的标准能量采集电路,在此基础上设计了并联电感同步开关能量采集电路,通过理论分析和计算,建立了该电路的输出功率数学模型.通过ANSYS压电耦合分析及MULTISIM(电路仿真软件)电路仿真,得到并联电感同步开关能最采集电路比标准能量采集电路的输出电压高出1倍,输出功率高出400%.  相似文献   

7.
以同时提升多模态采集和增加带宽为研究方向,结合多模态扩频理论,建立了一套多模态宽频且能多方向工作的压电振动能量采集系统。该系统包含能量采集器和电源管理电路两个模块。其中,采集器包括4种谐振频率,组成了较宽的工作频带,保证了该采集器在低频振动工作环境下高效率地收集振动能量;电源管理电路将采集到的交流电转换为稳定的直流电,再对电容或电池等储能元件充电以供微电子器件使用。经过模态和谐响应分析后,搭建了实验平台并对采集系统进行实验测试。实验结果表明,在加速度6 m/s2 简谐力激励下,工作频带为16.1~27.8 Hz,输出电压最高可达35.75 V,阻抗匹配后最优阻值为200 kΩ,此时输出功率为115.85 μW。  相似文献   

8.
压电振子是实现振动能量捕获的重要基础,它的结构参数对其发电量和固有频率产生直接影响,需要进行优化设计.该文针对悬臂梁压电振子结构,采用ANSYS有限元建模方法,进行了静力学及模态仿真分析.研究了压电振子的各参数和质量块对其发电量、固有频率的影响规律,设计并搭建了实验台进行实验研究.实验结果验证了仿真分析的正确性,为压电振子的优化设计提供了依据.  相似文献   

9.
提出了一种基于d33模式的梯形压电悬臂梁式能量采集器.采用梯形悬臂梁结构能提高能量采集器的平均应力和降低其最大应力,增加其输出电压和使用寿命;同时由于压电材料的d33系数一般是d31系数的2~3倍,利用d33模式同样能提高能量采集器的输出电压.分析和制备了同尺寸的d31模式和d33模式两种能量采集器,并进行测试.实验结果表明,d33模式能量采集器的输出电压约是d31模式的2倍,具有较高输出电压,与有限元分析结果基本一致.  相似文献   

10.
理论分析得到微悬臂梁式压电能量采集器的设计准则.采用一种新颖的制造工艺,将高性能压电陶瓷锆钛酸铅(PZT)块材与硅片在540 ℃高温下键合1 h后,减薄并切割成形成压电悬臂梁.使用ANSYS软件进行仿真,得到了器件的固有频率、尖端位移和电压输出的频率响应.设计一套振动能量采集器测试装置,并对器件进行测试.测试结果表明,所制得的器件固有频率为2 580 Hz,在10 m/s2的正弦加速度激励下,其输出峰-峰值电压达1.58 V,测试结果与仿真分析基本吻合.  相似文献   

11.
目前压电振动能量收集成为微能量领域的研究热点.由于收集的能量较小,因此需要储能器件把收集的能量存储起来以便为电子元件供电.比较了常用的储能器件,包括电阻、电解电容器、超级电容器和可充电电池.研究了这些器件的充放电特性和应用状况,比较了这些器件的优缺点,结果发现,超级电容器可在低压状态下为电子元件有效供电,适合在压电能量收集中推广应用.  相似文献   

12.
根据压电元件的特性提出一种压电能量收集与管理电路。它包括一个基于电感的并联同步开关收集电路( P-SSHI )、一个控制电路和一个DC-DC电路。该P-SSHI电路只需要两个开关,仿真的结果显示其收集的能量相比传统的AC-DC电路提高5倍以上;DC-DC电路工作在电流断续模式下(DCM),这有利于降低功耗,提高轻载效率,且仿真结果的输出电压为3.3 V,电压精度为0.02%。这种压电能量收集与管理电路能够为微功率设备提供稳压。  相似文献   

13.
基于压电效应的能量回收接口电路是能量回收系统的重要组成部分,经典的接口电路有标准接口、同步电荷提取电路(SECE)、并联同步开关电感电路(Parallel-SSHI)、串联同步开关电感电路(Series-SSHI)4种。提出并设计了一种新的接口电路——同步电荷提取和翻转电路(SCEI)接口电路,完成了该接口电路在恒定激振位移情况下回收功率的理论分析和计算,并利用电子仿真软件Multisim对SCEI和4种典型接口电路的回收功率进行了仿真和比较。结果表明,SCEI接口电路性能优越,其回收功率约是SECE电路的1.5倍,且与负载无关。  相似文献   

14.
魏胜 《压电与声光》2017,39(1):144-148
压电材料可将机械振动能转换为电能,但其产生的电能较小且具有交流特性,有必要建立储能电路将压电振动产生的电能储存起来并输出稳定的直流电。根据压电构造方程,建立压电振动能量收集系统的耦合场数学模型,对输出电压和最大输出功率进行数值模拟。设计与制作了一种以电容为储能介质的储能电路,通过电压比较器和电压调节器来保证稳定的直流输出。实验结果表明该储能电路能提供稳定的2.24V的直流输出电压,储能效率最高可达66.3%,并分析其能耗及误差产生的原因。  相似文献   

15.
研究了悬臂梁式压电振动能量回收装置压电片贴片位置和尺寸优化问题。首先分析推导出了应变方程、开路电压方程和压电能量方程,然后提出了运用开路电压和压电能量方程得到压电片的最优贴片位置和最优尺寸的优化方法,最后运用提出的优化方法通过理论计算得到了一、二阶模态下压电片最优贴片位置及最优尺寸,并运用abaqus软件进行了仿真分析。结果表明,理论计算与仿真分析结果基本吻合,一、二阶模态下压电片最优位置分别为梁的根部和中部,最优尺寸均约为梁长的一半。说明提出的压电片位置和尺寸优化方法是正确有效的。  相似文献   

16.
为了提高压电式振动能量回收系统的能量回收能力和解决在负载变化使能量回收效率变差的问题,以悬臂梁式压电振动发电系统为例,提出了一种高效的压电振动能量收集电路设计方案,即并联型双同步开关电感接口电路,可将压电梁转换振动能量得到的电能高效地储存到电容中。实验结果表明,压电梁在频率为38.4Hz、加速度有效值为0.035m/s2振动激励下工作时,给出的并联双同步开关能量回收(P-DSSH)接口电路可释放的瞬时功率达0.25mW,是全桥整流接口电路(SEH)最优功率的5.8倍,是并联同步开关电感(P-SSHI)接口电路可释放的瞬时功率的2.2倍,是LTC3588-1电路可释放的瞬时功率的1.27倍,且其工作不受负载变化的影响。  相似文献   

17.
悬臂梁电极长度是影响压电振动俘能特性的重要因素之一.提出了用能量分布函数描述在振动俘能过程中电场能量与电极占比的关系,并探究了电极占比对电气输出特性影响的本质.指出矩形和三角形悬臂梁获得最大功率的最优电极占比在50%~60%之间,在俘能过程中存在电荷的重新分配,且存在能量损失,在最优电极处能量损失最低,全电极时能量损失较大.仿真和实验结果均表明矩形和三角形悬臂梁的最优电极占比与能量分布函数得到的最优值相吻合,优化电极提高输出功率是可行的.  相似文献   

18.
王海  邱皖群  周璇  付邦晨 《压电与声光》2016,38(6):1003-1008
为了提高压电能量收集器的工作频带宽度、降低其固有频率并提高收集效率,设计了一种多质量块宽频压电能量收集器。建立多质量块压电悬臂梁的理论模型,分析质量块位置对输出功率的影响;有限元分析质量块数量对输出电压和固有频率的影响;搭建试验台,对多质量块宽频压电能量收集器进行测试。实验测得:随着悬臂梁自由端质量块数量的增加其一阶固有频率由62 Hz降至28 Hz,工作频带宽度增加39.3%,输出功率由17 mW增加至31 mW,且整流后得到的功率是桥式整流电路的1.31倍。实验结果表明,随着质量块数量的增加,压电悬臂梁的一阶固有频率降低,频宽增大,输出功率增加,且新的能量收集电路的转换效率比桥式整流电路高。  相似文献   

19.
王海  邱皖群  周璇  付邦晨 《压电与声光》2015,37(6):1003-1008
为了提高压电能量收集器的工作频带宽度、降低其固有频率并提高收集效率,设计了一种多质量块宽频压电能量收集器。建立多质量块压电悬臂梁的理论模型,分析质量块位置对输出功率的影响;有限元分析质量块数量对输出电压和固有频率的影响;搭建试验台,对多质量块宽频压电能量收集器进行测试。实验测得:随着悬臂梁自由端质量块数量的增加其一阶固有频率由62 Hz降至28 Hz,工作频带宽度增加39.3%,输出功率由17mW增加至31mW,且整流后得到的功率是桥式整流电路的1.31倍。实验结果表明,随着质量块数量的增加,压电悬臂梁的一阶固有频率降低,频宽增大,输出功率增加,且新的能量收集电路的转换效率比桥式整流电路高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号