首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Domino circuit topology for high-speed operation, robustness and lower power consumption is quintessential in design of digital systems. In this paper, various high speed and robust mechanisms are proposed to enhance the speed of Clock-Delayed Dual Keeper Domino (CDDK) circuit. Delayed enabling of keeper circuit in CDDK domino circuit reduces contention between keeper circuit and Pull-Down network (PDN). The speed of transition at the dynamic node of the CDDK domino circuit is enhanced through imposing techniques namely (i) controlled clock delay time in enabling the keeper transistor, (ii) keeper control signal voltage swing variation, (iii) sizing of keeper transistors and (iv) deploying an additional conditional discharge path. The robustness of CDDK circuit is increased by upsizing the keeper transistor without degrading the speed by stack arrangement of dual keeper transistors. The simulation of enhancement techniques has been performed using Cadence® Virtuoso ADEL and ADEXL environments employing UMC 90nm technology library. The simulation results of wide fan-in 64-input OR gate demonstrate that CDDK technique with additional discharge path offer 38% increase in speed and CDDK technique with keeper transistor upsizing offers 52% increase in noise gain margin without speed degradation while comparing with the conventional domino logic circuit.  相似文献   

2.
Domino logic with variable threshold voltage keeper   总被引:2,自引:0,他引:2  
A variable threshold voltage keeper circuit technique is proposed for simultaneous power reduction and speed enhancement of domino logic circuits. The threshold voltage of a keeper transistor is dynamically modified during circuit operation to reduce contention current without sacrificing noise immunity. The variable threshold voltage keeper circuit technique enhances circuit evaluation speed by up to 60% while reducing power dissipation by 35% as compared to a standard domino (SD) logic circuit. The keeper size can be increased with the proposed technique while preserving the same delay or power characteristics as compared to a SD circuit. The proposed domino logic circuit technique offers 14% higher noise immunity as compared to a SD circuit with the same evaluation delay characteristics. Forward body biasing the keeper transistor is also proposed for improved noise immunity as compared to a SD circuit with the same keeper size. It is shown that by applying forward and reverse body biased keeper circuit techniques, the noise immunity and evaluation speed of domino logic circuits are simultaneously enhanced.  相似文献   

3.
FinFET domino logic with independent gate keepers   总被引:1,自引:0,他引:1  
Scaling of single-gate MOSFET faces great challenges in the nanometer regime due to the severe short-channel effects that cause an exponential increase in the sub-threshold and gate-oxide leakage currents. Double-gate FinFET technology mitigates these limitations by the excellent control over a thin silicon body by two electrically coupled gates. In this paper a variable threshold voltage keeper circuit technique using independent-gate FinFET technology is proposed for simultaneous power reduction and speed enhancement in domino logic circuits. The threshold voltage of a keeper transistor is dynamically modified during circuit operation to reduce contention current without sacrificing noise immunity. The optimum independent-gate keeper gate bias conditions are identified for achieving maximum savings in delay and power while maintaining identical noise immunity as compared to the standard tied-gate FinFET domino circuits. With the variable threshold voltage double-gate keeper circuit technique the evaluation speed is enhanced by up to 49% and the power consumption is reduced by up to 46% as compared to the standard domino logic circuits designed for similar noise margin in a 32 nm FinFET technology.  相似文献   

4.
Dynamic logic is susceptible to noise, especially in the ultra-deep submicrometer dual threshold voltage technology. When the dual threshold voltage is applied to the domino logic, noise immunity must be carefully considered since the significant subthreshold current of the low threshold voltage transistor makes the dynamic node much more susceptible to noise. In the first part of this paper, we introduce a new keeper transistor sizing method to determine the optimal keeper transistor size in terms of speed, power, and noise immunity. With the use of data obtained by presimulation, it is unnecessary to simulate all the design corners corresponding to the feasible NMOS evaluation transistor size ranges to find the optimal keeper transistor size. HSPICE simulation results show that the proposed keeper transistor sizing method can be broadly applied to all the domino logic gates. In the second part of this paper, we propose a new dual threshold voltage domino logic synthesis with the keeper transistor sizing to minimize the power consumption while meeting delay and noise constraints. With the optimal keeper transistor size determined by the proposed keeper transistor sizing method, the dual threshold voltage assignment to domino logic can be simplified to the discrete threshold voltage selection. Experimental results for ISCAS85 benchmark circuits show significant savings on leakage power and active power.  相似文献   

5.
设计实现了一种改进的高扇入多米诺电路结构.该电路的nMOS下拉网络分为多个块,有效降低了动态节点的电容,同时每一块只需要一个小尺寸的保持管.由于省去了标准多米诺逻辑中的尾管,有效地提升了该电路的性能.在0.13μm工艺下对该结构实现的一个64位或门进行模拟,延迟为63.9ps,功耗为32.4μw,面积为115μm2.与组合多米诺逻辑相比,延迟和功耗分别降低了55%和38%.  相似文献   

6.
We present a leakage current replica (LCR) keeper for dynamic domino gates that uses an analog current mirror to replicate the leakage current of a dynamic gate pull-down stack and thus tracks process, voltage, and temperature. The proposed keeper has an overhead of one field-effect transistor per gate plus a portion of a shared current mirror. Techniques for properly sizing LCR keepers are presented. Using these sizings, LCR keepers allow design of and-or circuits with 30% more legs than conventional keepers at the same noise margin in a 90-nm, 1.2-V CMOS logic process. Furthermore, 16-24-leg dynamic AO circuits are 25%-40% faster when using the replica keeper. We demonstrated the circuit operation on a 1024 words times 72 bits, 3W/4R embedded SRAM macro using a four-stage LCR-keeper domino structure for a read-out circuit  相似文献   

7.
A leakage-tolerant design technique for high fan-in dynamic logic circuits is presented. An NMOS transistor with gate and drain terminals tied together (diode) is added in series with the evaluation network of standard domino circuits. Due to the stacking effect, the leakage of the evaluation path significantly decreases, thereby improving the robustness of the circuit against deep-submicron subthreshold leakage and input noise. To improve the speed of the circuit, a current mirror is also employed in the evaluation network to increase the evaluation current. The proposed technique (diode-footed domino) exhibits considerable improvement in leakage and noise immunity as compared to the standard domino circuits. Simulation results of wide fan-in gates designed using Berkeley Predictive Technology Models of 70-nm technology demonstrate at least 1.9/spl times/ noise-immunity improvement at the same delay compared to the standard domino circuits. Dynamic comparators and multiplexers are designed using the diode-footed domino and conventional techniques to demonstrate the effectiveness of the proposed scheme in improving leakage-tolerance and performance of high fan-in circuits.  相似文献   

8.
In this paper, a new design for low leakage and noise immune wide fan-in domino circuits is presented. The proposed technique uses the difference and the comparison between the leakage current of the OFF transistors and the switching current of the ON transistors of the pull down network to control the PMOS keeper transistor, yielding reduction of the contention between keeper transistor and the pull down network from which previously proposed techniques have suffered. Moreover, using the stacking effect, leakage current is reduced and the performance of the current mirror is improved. Results of simulation in high performance 16 nm predictive technology model (PTM) demonstrate that the proposed circuit exhibits about 39% less power consumption, and nearly 2.57 times improvement in noise immunity with a 41% die area overhead for a 64-bit OR gate compared to a standard domino circuit.  相似文献   

9.
Impact of NBTI on performance of domino logic circuits in nano-scale CMOS   总被引:2,自引:0,他引:2  
Negative Bias Temperature Instability (NBTI) in pMOS transistors has become a major reliability concern in the state-of-the art digital circuit design. This paper discusses the effects of NBTI on 32 nm technology high fan-in dynamic OR gate, which is widely used in high-performance circuits. The delay degradation and power dissipation of domino logic, as well as the Unity Noise Gain (UNG), are analyzed in the presence of NBTI degradation. We have shown the degradation in the output inverter pMOS transistor of the domino gate has a dominant impact on the delay in comparison with the keeper impact. Based on this analysis we have proposed that upsizing just the output inverter pMOS transistor can compensate for the NBTI degradation. Moreover, the impact of tuning the duty cycle of the clock has been investigated. It has been shown that although the keeper and the precharge transistors experience more NBTI degradation by increasing the low level in the clock signal, the total performance of the circuit will improve. We have also proposed an adaptive compensation technique based on Forward Body Biasing (FBB), to recover the performance of the aged circuit.  相似文献   

10.
易茂祥  丁力  张林  李扬  黄正峰 《微电子学》2017,47(4):499-504
N型多米诺或门是高性能集成电路常用的动态单元,负偏置温度不稳定性(NBTI)引起的PMOS管老化问题已成为降低多米诺或门电路可靠性的主要因素之一。仿真分析表明,N型多米诺或门中各种PMOS管受NBTI的影响有明显差别。针对这种差异,提出一种双阈值配置的抗老化多米诺或门。对电路老化起关键作用的保持PMOS管和反相器PMOS管采用低阈值电压设计。仿真结果表明,在保证噪声容限和功耗的条件下,该双阈值配置PMOS管的多米诺或门在10年NBTI老化后仍有0.397%的时序余量。  相似文献   

11.
Aggressive scaling of single-gate CMOS device face greater challenge in nanometre technology as sub-threshold and gate-oxide leakage currents increase exponentially with reduction of channel length. This paper discusses a double-gate FinFET (DGFET) technology which mitigates leakage current and higher ON state current when scaling is done beyond 32 nm. Here 8 and 16 input OR gate domino logic circuits are simulated on 32 nm FinFET Predictive technology model (PTM) on HSPICE. Simulation results of different 8 input OR gate domino logic circuits like Current-mirror footed domino (CMFD), High-speed clock-delayed (HSCD), Modified-HSCD (M-HSCD), Conditional evaluation domino logic (CEDL) and Conditional stacked keeper domino logic (CSK-DL), all operated in Short Gate (SG) and Low Power (LP) mode, shows tremendous reduction in average power consumption and delay. In this paper, domino logic-based circuit Ultra-Low Power Stack Dual-Phase Clock (ULPS-DPC) is proposed for both CMOS and FinFET (SG and LP modes). Proposed circuit shows maximum reduction in average power consumption of 84.04% when compared with CSK-DL circuit and maximum reduction in delay of 75.4% when compared with M-HSCD circuit at 10 MHz frequency when these circuits are simulated in SG mode.  相似文献   

12.
In this research paper, demonstrates, the logic performance of n and p channel complementary metal oxide semiconductor (CMOS) circuits implemented with dual material gate silicon on insulator junctionless transistor (DMG SOI JLT). The logic performance of a CMOS circuit is evaluated in terms of static power dissipation, voltage transfer characteristic, propagation delay and noise margin. The gate capacitance is less as compared to gate capacitance of DMG SOI transistor in saturation. The power dissipation for CMOS inverter of DMG SOI JLT is improved by 25% as compared to DMG SOI transistor. The DMG SOI JLT common source amplifier has 1.25 times amplification as that of DMG SOI transistor. The noise margin of DMG SOI JLT CMOS inverter is improved by 23% as compared to the DMG SOI transistor CMOS inverter. The NAND gate static power dissipation of DMG SOI JLT is found improved imperically as compared to DMG SOI transistor for various channel length. The improvement obtained is 53% for 20nm, 46% for 30nm and 34% for 40nm respectively. Static power dissipation of DMG SOI JLT inverter is reduced by 3% as compared to junction transistor inverter at channel length of 30nm.  相似文献   

13.
This paper investigates in detail the basic mechanisms of hysteretic delay and noise margin variations for floating-body partially depleted SOI CMOS domino circuits. We first consider the ‘clock cycling scenario’, which completely eliminates (or isolates) the hysteresis effect of the output inverter, thus allowing one to observe and understand the hysteresis effect of the front-end domino logic stage. Three cases, based on whether the input signals are domino input signals, from other domino circuits, static input signals, from static circuits or latches; or a combination of domino and static input signals, are examined and differentiated. It is shown that hysteretic delay variation is the largest and the noise margin worst for the case with mixed domino and static input signals. Although the delay and noise margin disparities among the three types of input signals are significant at the beginning of the clock cycles, they converge as the circuit approaches steady state. The ‘data cycling scenario’ with the combined hysteresis effect of both the front-end domino logic stage and the output inverter is then discussed. Circuits operating under the ‘data cycling scenario’ are shown to have less body charge loss through the switching cycles than under the ‘clock cycling scenario’.  相似文献   

14.
The stress-induced leakage current is predominantly a Shockley-Read-Hall-like generation-recombination current. As the stress progresses, the leakage current increases, eventually reaches a maximum and then decays. The leakage current lowers the current gain at low biases. It affects the narrow-emitter transistors more since it is proportional to the emitter edge length. But, its impact is less significant if the transistor is operated at a high Vbe , as required by constant-current scaling. The loss of the current gain does not affect the circuit speed directly. Instead, it reduces the logic swing and thus the noise margin of the circuit. The design to absorb the degradation with a larger initial logic swing results in a speed penalty. The reverse-stress-induced junction degradation can be eliminated by properly designing the circuit There is no concern for emitter-coupled logic (ECL) circuits when the logic swing is less than the Vbe of the transistors  相似文献   

15.
Leakage power consumption is a major technical problem faced in nanometer or deep submicron CMOS circuit technology. A new circuit technique based on “lector stacking” is proposed in this paper for reducing the subthreshold and gate oxide leakage currents in the idle and non-idle modes of operation for domino circuits. In this technique a p-type and an n-type leakage control transistor (LCT) are introduced between the pull-up and pull-down network, and the gate of one is controlled by the source of the other. For any combination of inputs, one of the LCTs will operate near its cut-off region and will increase the resistance between supply voltage and ground, resulting in reduced leakage current. Lector stacking retains the logic state during the idle mode as in the conventional footerless domino logic. Furthermore, the leakage current is suppressed at the output inverter circuit by adding a diode-footed transistor below the n-type transistor of the inverter, offering a more resistive path between supply voltage and ground.The proposed circuit technique for AND2, OR2, OR4, and OR8 circuits reduces the active power consumption by 13.66 % to 44.45 % and by 12 % to 33 % at the low and high die temperatures, respectively, compared to the standard footerless domino logic circuits. During idle mode for the same logic gates, 1.64 % to 79.39 % and 1.2 % to 35.19 % reduction of leakage current is observed with low and high inputs at 25 °C and 110 °C respectively. Similarly, during non-idle mode 0.94 % to 99.3 % and 1.57 % to 98.58 % is observed with low and high inputs at 25 to 110 °C, respectively, when compared to standard footerless domino logic circuits.  相似文献   

16.
NBTI导致的晶体管老化成为影响电路稳定性的主导因素,同时,降低电路的泄漏功耗是电路设计的目标之一。多米诺电路广泛应用在高性能集成电路中。本文提出了一种多米诺电路用来抑制NBTI引起的多米诺电路衰退并同时降低待机模式下的泄漏电流。在待机模式下,利用2个晶体管将标准多米诺电路的动态节点和输出节点同时上拉为电源电平,从而将保持器和输出反相器中的pMOS晶体管同时置为NBTI的恢复模式。使用全0输入向量和其中增加的一个晶体管的堆栈效应降低待机模式下多米诺电路的泄漏电流。实验表明针对NBTI效应,该方法降低了最多33%的性能衰退,并同时减少了最多79%的泄漏电流。  相似文献   

17.
A novel logic family, called charge recycling differential logic (CRDL), has been proposed and analyzed. CRDL reduces power consumption by utilizing a charge recycling technique with the speed comparable to those of conventional dynamic logic circuits. It has an additional benefit of improved noise margin due to inherently static operation. The noise margin problem of true single-phase-clock latch (TSPC) is also eliminated when a CRDL logic circuit is connected to it. Two swing-suppressed-input latches (SSILs), which are introduced for use with CRDL, have better performance than the conventional transmission gate latch. Moreover, a pipeline configuration with CRDL in a true two-phase clocking scheme shows completely race-free operation with no constraints on logic composition. Eight-bit Manchester carry chains and full adders were fabricated using a 0.8 μm single-poly double-metal n-well CMOS technology to verify the relative performance of the proposed logic family. The measurement results indicate that about 16-48% improvements in power-delay product are obtained compared with differential cascode voltage switch (DCVS) logic  相似文献   

18.
ABSTRACT

This paper proposes a 4:1 Multiplexer (MUX) designed using proposed Dual Chirality High-Speed Noise Immune Domino Logic (DCHSNIDL) technique for designing lower delay noise immune domino logic circuits in Carbon Nanotube Field Effect Transistors (CNTFETs) technology. Dynamic power consumption, speed and noise immunity of the circuit are improved by changing the threshold voltage of the CNTFETs. The chirality indices of the carbon nanotubes (CNTs) are varied to change the threshold voltage of the CNTFETs. Simulations are carried out for 32 nm Stanford CNTFET model in HSPICE for 2-, 4-, 8- and 16-input domino OR gates at a clock frequency of 200 MHz on a DC supply voltage of 0.9V. The proposed DCHSNIDL domino circuit reduces power consumption by a maximum of 61.77% and propagation delay by a maximum of 55.11% compared to Current-Mirror Based Process Variation Tolerant (CPVT) circuit in CNTFET technology. The proposed CNTFET-based domino technique shows a maximum reduction of 96.31% in power consumption compared to its equivalent circuit in CMOS technology for a 4-input OR gate. The proposed technique shows an improvement of 1.04× to 1.35× times in Unity Noise Gain (UNG) compared to various existing techniques in CNTFET technology. The 4:1 MUX designed using proposed technique has 48.91% lower propagation delay and consumes 52.80% lower power compared to MUX using CPVT technique.  相似文献   

19.
A novel technique of saturation control in TTL and other saturated logic circuits is described and analyzed. The approach is not only fully compatible with standard bipolar transistor technology, but lends itself to integration. The device parameter tracking on a chip is utilized to suitably bias a feedback saturation control transistor so that the stored charge of a TTL gate output transistor is reduced by typically two orders of magnitude. Thus, the turn-off switching time is significantly decreased without noticeably affecting the turn-on delay time. The performance improvement is close to that achieved by the well-known Schottky diode clamp approach; however, the novel technique offers advantages in noise margin, control of down-level output voltage, and processing. The effectiveness of the proposed technique has been verified theoretically by computer circuit analysis and experimentally by bench setup measurements.  相似文献   

20.
In this paper, efficient clock delayed domino logic with variable strength voltage keeper is proposed. The variable strength of the keeper is achieved through applying two different body biases to the keeper. The circuits used to generate the body biases are called capacitive body bias generator and cross-coupled capacitive body bias generator. Compared to a previous work, the body bias generator circuits presented in this paper are simpler and do not require double or triple power supply while consuming less area and power. To show the efficiency of the proposed technique, the implementation of a carry generator circuit by the proposed techniques and the previous work are compared. The simulation results for standard CMOS technologies of 0.18 mum and 70 nm show considerable improvements in terms of power and power delay product. In addition, the proposed technique shows much less temperature dependence when compared to that of previous work  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号