首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the design of power and spectrally efficient coded modulations based on amplitude phase shift keying (APSK) modulation with application to satellite broadband communications. APSK represents an attractive modulation format for digital transmission over nonlinear satellite channels due to its power and spectral efficiency combined with its inherent robustness against nonlinear distortion. For these reasons APSK has been very recently introduced in the new standard for satellite Digital Video Broadcasting named DVB‐S2. Assuming an ideal rectangular transmission pulse, for which no nonlinear inter‐symbol interference is present and perfect pre‐compensation of the nonlinearity, we optimize the APSK constellation. In addition to the minimum distance criterion, we introduce a new optimization based on the mutual information; this new method generates an optimum constellation for each spectral efficiency. To achieve power efficiency jointly with low bit error rate (BER) floor we adopt a powerful binary serially concatenated turbo‐code coupled with optimal APSK modulations through bit‐interleaved coded modulation. We derive tight approximations on the maximum‐likelihood decoding error probability, and results are compared with computer simulations. The proposed coded modulation scheme is shown to provide a considerable performance advantage compared to current standards for satellite multimedia and broadcasting systems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we propose efficient soft demodulation methods for the 64, 128, and 256 amplitude and phase shift keying schemes defined in the digital video broadcasting via satellite second‐generation system. We first derive hard decision threshold (HDT) lines for the constituent bits in a symbol and subsequently present compact equations to estimate the soft bit information. If the HDT line for a constituent bit is a simple continuous line, then the soft bit estimation is performed by simply calculating the distance between the detected symbol and the HDT line. High computational complexity and appreciable performance degradation may occur if HDT lines are too complex. In order to prevent this, we also propose a modified max‐log demodulation method that achieves the same performance as the original max‐log method but with reduced complexity. Depending on the application, a hybrid method can be utilized by combining the advantages of the HDT and modified max‐log methods. The simulation results reveal that the proposed hybrid scheme produces almost the same performance as the original max‐log method with greatly reduced computational complexity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
A low‐complexity turbo detection scheme is proposed for single‐carrier multiple‐input multiple‐output (MIMO) underwater acoustic (UWA) communications using low‐density parity‐check (LDPC) channel coding. The low complexity of the proposed detection algorithm is achieved in two aspects: first, the frequency‐domain equalization technique is adopted, and it maintains a low complexity irrespective of the highly dispersive UWA channels; second, the computation of the soft equalizer output, in the form of extrinsic log‐likelihood ratio, is performed with an approximating method, which further reduces the complexity. Moreover, attributed to the LDPC decoding, the turbo detection converges within only a few iterations. The proposed turbo detection scheme has been used for processing real‐world data collected in two different undersea trials: WHOI09 and ACOMM09. Experimental results show that it provides robust detection for MIMO UWA communications with different modulations and different symbol rates, at different transmission ranges. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Orthogonal frequency division multiplexing (OFDM) signals have a problem with a high peak‐to‐average power ratio (PAPR). A distortionless selected mapping (SLM) has been proposed to reduce the PAPR, but a high computational complexity prohibits its application to an OFDM system with a large number of subcarriers. Recently, we proposed OFDM combined with time division multiplexing (OFDM/TDM) using minimum mean square error frequency‐domain equalization (MMSE‐FDE) to improve the bit error rate (BER) performance of conventional OFDM with a lower PAPR. The PAPR problem, however, cannot be completely eliminated. In this paper, we present an SLM combined with symbol re‐mapping for OFDM/TDM using MMSE‐FDE. Unlike the conventional OFDM, where SLM is applied over subcarriers in the frequency domain, we exploit both time and frequency dimensions of OFDM/TDM signal to improve the performance with respect to PAPR and BER. A mathematical model for PAPR distribution of OFDM/TDM with SLM is presented to complement the computer simulation results. It is shown that proposed SLM can further reduce the PAPR without sacrificing the BER performance with the same or reduced computational complexity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A simple and general bit log‐likelihood ratio (LLR) expression is provided for Gray‐coded rectangular quadrature amplitude modulation (R‐QAM) signals. The characteristics of Gray code mapping such as symmetries and repeated formats of the bit assignment in a symbol among bit groups are applied effectively for the simplification of the LLR expression. In order to reduce the complexity of the max‐log‐MAP algorithm for LLR calculation, we replace the mathematical max or min function of the conventional LLR expression with simple arithmetic functions. In addition, we propose an implementation algorithm of this expression. Because the proposed expression is very simple and constructive with some parameters reflecting the characteristic of the Gray code mapping result, it can easily be implemented, providing an efficient symbol de‐mapping structure for various wireless applications.  相似文献   

6.
In this paper, a low‐complexity spread spectrum system with M‐ary cyclic‐shift keying (MCSK) symbol spreading is proposed. In addition, by using the minimum‐shift‐keying (MSK) as the chip‐level modulation, we obtain a high‐rate QPSK‐MCSK transceiver scheme which not only provides a constant‐envelop and continuous‐phase transmitted signal, but can also achieve a better performance than the conventional direct sequence spread spectrum (DSSS) system. At the transmitter, the data stream is first mapped into QPSK‐MCSK symbols in terms of orthogonal Gold code sequences, then followed by the cyclic prefix (CP) insertion for combating the interblock interference, and finally applying the MSK scheme to maintain the constant‐envelope property. The receiver first performs MSK demodulation, then CP removal, and finally the channel‐included MCSK despreading and symbol demapping. Furthermore, the single input single output (SISO) QPSK‐MCSK transceiver can be easily extended to the multiple input single output (MISO) case by incorporating the space–time block coding for high‐link quality. Simulation results show that the proposed SISO and MISO QPSK‐MCSK systems significantly outperform the conventional DSSS counterparts under the AWGN channel, and attain a more robust performance under the multipath fading channel. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we propose an efficient soft‐output signal detection method for spatially multiplexed multiple‐input multiple‐output (MIMO) systems. The proposed method is based on the ordered successive interference cancellation (OSIC) algorithm, but it significantly improves the performance of the original OSIC algorithm by solving the error propagation problem. The proposed method combines this enhanced OSIC algorithm with a multiple‐channel‐ordering technique in a very efficient way. As a result, the log likelihood ratio values can be computed by using a very small set of candidate symbol vectors. The proposed method has been synthesized with a 0.13‐μm CMOS technology for a 4×4 16‐QAM MIMO system. The simulation and implementation results show that the proposed detector provides a very good solution in terms of performance and hardware complexity.  相似文献   

8.
This paper investigates blind channel estimation and multiuser detection for quasi‐synchronous multi‐carrier code‐division multiple‐access (MC‐CDMA) multiple‐input multiple‐output (MIMO) systems with quasi‐orthogonal space–time block codes (QO‐STBC). Subspace‐based blind channel estimation is proposed by considering a QO‐STBC scheme that involves four transmit antennas and multiple receive antennas. Based on the first‐order perturbation theory, the mean square error of the channel estimation is derived. With the estimated channel coefficients, we employ minimum output energy and eigenspace receivers for symbol detection. Using the QO‐STBC coding property, the weight analyses are performed to reduce the computational complexity of the system. In addition, the forward–backward averaging technique is presented to enhance the performance of multiuser detection. Numerical simulations are given to demonstrate the superiority of the proposed channel estimation methods and symbol detection techniques. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we propose symbol‐based receivers for orthogonal frequency division multiplexing (OFDM) code‐division multiple‐access (CDMA) multiple‐input‐multiple‐output (MIMO) communications in multipath fading channels. For multiuser and multipath fading environments, both intersymbol interference and multiple‐access interference must be considered. We propose narrowband and wideband antennas and Wiener code filter for MIMO OFDM‐CDMA systems. The proposed receivers are updated symbol‐by‐symbol to achieve low computational complexity. Simulation results show that the proposed Wiener code filter can improve the system performance for the proposed adaptive antennas. The wideband antenna can achieve better error‐rate performance than that of the narrowband antenna when multipath effect exists. The convergence rate of the recursive least squares antennas is faster than that of the least mean square antennas. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
This paper proposes a sequential detection technique for a multi‐user receiver that is constructed over a CDMA system. In this system, the transmitter transmits a symbol made by spreading the spectrum with an enveloped sequence protected by guard sequences, and a receiver de‐modulates the core‐sequence part of the received symbol with either a de‐correlating detector or an MMSE detector. The advantage is that performance is improved without reducing the number of the active users. This sequential detection system estimates the best user signal from all of the soft outputs, which are obtained by solving a de‐correlating system of equations. Once detected, the best user component is removed from the received symbol. The resultant symbol composed of the remaining user signals is then sequentially detected by repeating the method stated above. A computer simulation of this system reveals a remarkable improvement in the bit‐error rate performance compared to conventional systems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Space‐time block coded spatial modulation (STBC‐SM) exploits the advantages of both spatial modulation and the Alamouti space‐time block code. Meanwhile, space‐time labeling diversity has demonstrated an improved bit error rate (BER) performance in comparison to the latter. Hence, in this paper, we extend the application of labeling diversity to STBC‐SM, which is termed STBC‐SM‐LD. Under identical channel assumptions, STBC‐SM‐LD exhibits superior BER performance compared to STBC‐SM. For example, with 4 × 4, 64‐quadrature amplitude modulation (64‐QAM), STBC‐SM‐LD has a BER performance gain of approximately 2.6 dB over STBC‐SM. Moreover, an asymptotic bound is presented to quantify the average BER performance of M‐ary QAM STBC‐SM‐LD over independent and identically distributed Rayleigh frequency‐flat fading channels. Monte Carlo simulations for STBC‐SM‐LD agree well with the analytical framework. In addition to the above, low‐complexity (LC) near‐maximum‐likelihood detectors for space‐time labeling diversity and STBC‐SM‐LD are presented. Complexity analysis of the proposed LC detectors shows a substantial reduction in computational complexity compared to their ML detector counterparts. For example, the proposed detector for STBC‐SM‐LD achieves a 91.9% drop in computational complexity for a 4 × 4, 64‐QAM system. The simulations further validate the near‐maximum‐likelihood performance of the LC detectors.  相似文献   

12.
A cross‐level pre‐RAKE combining (PRC) scheme for time hopping pulse amplitude modulation ultra wideband (TH‐PAM UWB) transmitter is studied in this paper. A two‐stage cross‐level PRC (CL‐PRC) scheme is proposed. The conventional PRC schemes suppress all the chip‐wise interference. However, the proposed scheme suppresses only the specific frame‐wise inter‐symbol interference (ISI) by exploiting the characteristic that the information bits are transmitted only at ultra short time slots. This results in a low complexity pre‐equalizer without bit error rate (BER) performance degradation. Furthermore, an order selection rule is presented to achieve the tradeoff between signal‐to‐interference ratio (SIR) and computational complexity. Simulation results illustrate the superior SIR and BER performance of our proposal. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
For increased bandwidth efficiency and receiver performance, standards for satellite broadcasting systems are evolving by utilizing efficient transmission techniques. The second‐generation digital video broadcasting for satellites (DVB‐S2) adopts the amplitude phase shift keying (APSK) modulation for enhanced performance over nonlinear channels. In this paper, we derive error rate bounds for APSK modulated symbols and generalize the bounds to the case of distorted constellation, which occurs when the maximum transmission amplitude is saturated by the soft‐limiter type channel. The derived bound is shown to significantly improve the previously known result, to accurately predict both the symbol error rate and bit error rate in the entire signal‐to‐noise ratio (SNR) region of interest. Using the derived formula, the optimal input power level for the soft‐limiter channel is determined, and the corresponding minimal error rates for 16‐ and 32‐APSK are quantified. The result is also interpreted in terms of optimal input back‐off (IBO) for nonlinear power amplifiers by evaluating the performance degradation as a function of IBO. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we present a high‐rate M‐ary quadrature amplitude modulation (M‐QAM) space‐time labeling diversity (STLD) system that retains the robust error performance of the conventional STLD system. The high‐rate STLD is realised by expanding the conventional STLD via a unitary matrix transformation. Robust error performance of the high‐rate STLD is achieved by incorporating trellis coding into the mapping of additional bits to high‐rate codes. The comparison of spectral efficiency between the proposed trellis code‐aided high‐rate STLD (TC‐STLD) and the conventional STLD shows that TC‐STLD with 16‐QAM and 64‐QAM respectively achieves a 12.5% and 8.3% increase in spectral efficiency for each additional bit sent with the transmitted high‐rate codeword. Moreover, we derive an analytical bound to predict the average bit error probability performance of TC‐STLD over Rayleigh frequency‐flat fading channels. The analytical results are verified by Monte Carlo simulation results, which show that the derived analytical bounds closely predict the average bit error probability performance at high signal‐to‐noise ratios (SNR). Simulation results also show that TC‐STLD with 1 additional bit achieves an insignificant SNR gain of approximately 0.05 dB over the conventional STLD, while TC‐STLD with 2 additional bits achieves an SNR gain of approximately 0.12 dB.  相似文献   

15.
Secure transmission of information over hostile wireless environments is desired by both military and civilian parties. Direct‐sequence spread‐spectrum (DS‐SS) is such a covert technique resistant to interference, interception, and multipath fading. Identifying spread‐spectrum signals or cracking DS‐SS systems by an unintended receiver (or eavesdropper) without a priori knowledge is a challenging problem. To address this problem, we first search for the start position of data symbols in the spread signal (for symbol synchronization); our method is based on maximizing the spectral norm of a sample covariance matrix, which achieves smaller estimation error than the existing method of maximizing the Frobenius norm. After synchronization, we remove a spread sequence by a cross‐correlation based method, and identify the spread sequence by a matched filter. The proposed identification method is less expensive and more accurate than the existing methods. We also propose a zigzag searching method to identify a generator polynomial that reduces memory requirement and is capable of correcting polarity errors existing in the previous methods. In addition, we analyze the bit error performance of our proposed method. The simulation results agree well with our analytical results, indicating the accuracy of our analysis in additive white Gaussian noise (AWGN) channel. By simulation, we also demonstrate the performance improvement of our proposed schemes over the existing methods. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Space–time coded multiple‐input multiple‐output (MIMO) technology is an important technique that improves the performance of wireless communication systems significantly without consuming bandwidth resource. This paper first discusses the characteristics and limitations of traditional symbol‐level space–time coding schemes, which work largely on the basis of an assumption that signals are sent to a block‐fading channel. Therefore, the symbol‐level space–time coding schemes rely on symbol‐level signal processing. Taking advantage of orthogonal complementary codes, we propose a novel MIMO scheme, in this paper, based on chip‐level space–time coding that is different from the traditional symbol‐level space–time coding. With the help of space–time–frequency complementary coding and multicarrier modem, the proposed scheme is able to achieve multipath interference‐free and multiuser interference‐free communications with simple a correlator detector. The proposed chip‐level space–time coded MIMO works well even in a fast fading channel in addition to its flexibility to achieve diversity and multiplexing gains simultaneously in varying channel environments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The denoising mapping with the closest‐neighbor clustering (CNC) method in denoise‐and‐forward two‐way relay channels is studied. Specifically, the symmetry of the constellations in source terminals A and B is utilized to reduce the complexity of the CNC method. The specific case considered first to illustrate how the constellation symmetry works in the CNC method is the quadrature phase‐shift keying constellation in A and B and the single‐antenna deployment in all terminals. This case study shows that an enormous complexity reduction can be achieved. Next, the result is extended to multiple‐antenna scenarios and square quadrature amplitude modulations.  相似文献   

18.
In this paper, we present the performance of selective combining decode‐and‐forward relay networks in independent and non‐identically distributed Nakagami‐n and Nakagami‐q fading channels by using the best–worse and the decoding‐set approaches. The outage probability, moment generation function, symbol error probability and average channel capacity are derived in closed‐form using the signal to noise ratio (SNR) statistical characteristics. After that, we analyze the outage probability at high SNRs, and then, we optimize it. Beside the optimum method, we have proposed a sub‐optimum adaptive method. Also, we derive the outage probability for the selection‐combining case with the direct link between the source and the destination. Finally, for comparison with analytical formulas, we perform some Monte‐Carlo simulations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Low encoding complexity is very important for quasi‐cyclic low‐density parity‐check (QC‐LDPC) codes used in wireless communication systems. In this paper, a new scheme is presented to construct QC‐LDPC codes with low encoding complexity. This scheme is called two‐stage particle swarm optimization (TS‐PSO) algorithm, in which both the threshold and girth distribution of QC‐LDPC codes are considered. The proposed scheme is composed of two stages. In the first stage, we construct a binary base matrix of QC‐LDPC code with the best threshold. The matrix is constructed by combining a binary PSO algorithm and the protograph extrinsic information transfer (PEXIT) method. In the second stage, we search an exponent matrix of the QC‐LDPC code with the best girth distribution. This exponent matrix is based on the base matrix obtained in the first stage. Consequently, the parity‐check matrix of the QC‐LDPC code with the best threshold and best girth distribution are constructed. Furthermore, bit error rate performances are compared for the QC‐LDPC codes constructed by proposed scheme, the QC‐LDPC code in 802.16e standard, and the QC‐LDPC code in Tam's study. Simulation results show that the QC‐LDPC codes proposed in this study are superior to both the 802.16e code and the Tam code on the additive white Gaussian noise (AWGN) and Rayleigh channels. Moreover, proposed scheme is easily implemented, and is flexible and effective for constructing QC‐LDPC codes with low encoding complexity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, an anti‐jamming approach is proposed for the downlink of satellite communication systems when encountering a hostile repeater‐jamming. Based on blind source separation, this approach can eliminate repeater‐jamming by separating the mixtures of the communication signals and the repeater‐jamming. Meanwhile, oversampling method is employed to transform the underdetermined mixing of signals into a determined mixing for facilitating the separation. In the simulations, the symbol error ratio (SER) of the separated communication signals can approximate the theory SER, and the anti‐repeater‐jamming capacity can arrive to nearly 28 dB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号