首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
为了获得高效而经济的光电器件,采用湿法旋涂技术制备量子点发光二极管器件( QLED),并对其光电特性进行了测试。此器件基于纳米二氧化钛( TiO2)的电子传输层,采用ITO玻璃作为阳极,Al为阴极,PEDOT为空穴注入层,TFB为空穴传输层,量子点( QD)作为发光层的结构。研究发现,QLED器件的开启电压为2.6 V,发光高度大于10 cd/m2。实验结果说明了TiO2可以作为获得高效QLED器件以及其他光电器件的一种有效途径。  相似文献   

2.
在量子点发光二极管(QLED)中,电子-空穴注入不平衡和量子点层/电子传输层间界面的荧光猝灭限制着QLED效率的提升。基于此,采用金属卤化物(ZnCl2)原位处理电子传输层方法来减少氧化锌(ZnO)电子传输层的氧空位,同时有效钝化其表面不饱和键,因此在一定程度上实现抑制量子点/电子传输层界面的荧光猝灭和提高QLED中的电子-空穴注入平衡的目的,最终得到了高亮度、高效率的QLED。原位钝化处理后的ZnO基QLED的最大亮度、峰值电流效率、峰值功率效率和峰值外量子效率(EQE)分别从未处理QLED的176 800 cd/m2、9.86 cd/A、8.38 lm/W和7.42%提高到219 200 cd/m2、15.14 cd/A、12.66 lm/W和11.65%。结果表明,ZnCl2原位钝化ZnO电子传输层对QLED性能的提升起到重要的作用。  相似文献   

3.
为研究混合量子点(QD)发光二极管(QLED)的性能, 利用红、绿量子点混合作为发光层,制备了结构为 ITO/PEDOT:PSS/poly-TPD/QDs(红、绿1∶1混合)/ZnO/Al的橙光QLED,并与 结构为 ITO/PEDOT:PSS/poly-TPD/QDs(红光)/ZnO/Al的红光QLED进行了对比。实验结果表明, 基于红、绿QD混合的橙光QLED的制备方法是有效的,制备的橙光QLED 电流密度和亮度均小 于红光QLED, 但电流效率远大于红光QLED。研究发现,器件性能与各功能层能级以及厚度密切相关,应通 过选取适当能 级的发光层材料,将注入的空穴以及电子同时限制在发光层内从而提高器件的电流效率,并 调节各功能层 厚度使得载流子注入平衡从而提高器件性能。  相似文献   

4.
以量子点电致发光器件(QLED)中能级分布和载流子浓度的关系为理论基础,研究了QLED发光层能级变化与驱动电压的关系,建立了数学模型.以CdSe/ZnS核壳结构量子点为发光层,计算了器件正常发光时的阈值电压,分析了电流密度与量子点中电子准费米能级与空穴准费米能级之差的关系.结果表明,当驱动电压大于9.8V时,CdSe/ZnS中电子的准费米能级与空穴的准费米能级之差大于1.03 eV,量子点电致发光器件正常发光;理论模型证实由于电子在发光层与电子传输层界面的大量积聚,导致淬灭发生,降低发光效率.  相似文献   

5.
量子点发光二极管中载流子注入机理的研究   总被引:1,自引:1,他引:0  
针对量子点(QDs)发光二极管(QLED)中载流子注 入不平衡的问题,对载流子的注入机理进行了研 究。在隧穿注入和空间电荷限制电流(SCLC)模型的基础上,仿真分析了空穴和电子在QDs 层的注入情况,制备 了QLED的样品。CdSe/CdS作为QDs层,PEDOT:PSS作为空穴注入层(HIL),TPD作为 空穴传输层(HTL),Alq3作为电子传输层(ETL)。优选的QDs层厚为25nm时,确定了TPD和Alq3的理论最优厚分别为48nm。研究发现, 当驱动电压低于6.5V时,隧穿注入电流在载流子的传输过 程中起主导作用;高于6.5V时,SCLC在载流子的传输过程中起主导 作用。实验结果表明,当 Alq3厚为20nm时,器件发出QDs的红光,随着Alq3厚度的增加, 器件开始出现绿光,实验结果与仿 真结果基本吻合。研究结果对QLED的制备具有理论借鉴意义。  相似文献   

6.
综述了采用旋涂法制备的量子点发光二极管(QLED)中各功能层材料的研究进展,对可旋涂制备的多种载流子注入层和传输层材料的特性及应用进行了对比总结。多项研究表明:对于电子传输层(ETL),ZnO和TiO2等无机金属氧化物材料在电子迁移率及器件可靠性方面都要优于有机材料;对于空穴传输层(HTL),则是具有较高空穴迁移率及成膜质量好的聚[双(4-苯基)(4-丁基苯基)胺](Poly-TPD)、聚(9-乙烯咔唑)(PVK)等有机聚合物材料应用更为广泛;而MoOx和WOx等无机金属氧化物材料则由于其能级匹配和可靠性方面的优势更多用于空穴注入层。随着技术的成熟及QLED应用中对高效率和高可靠性的要求,无机金属氧化物材料在QLED中的应用将越来越广泛,结合成本低廉的旋涂法,将有力地推动QLED的商业化。  相似文献   

7.
为研究量子点发光器件结构与性能的关系,制备了以CdSe/ZnS量子点作为发光层、poly-TPD作为空穴传输层,Alq3作为电子传输层的量子点发光二极管,对器件结构及性能参数进行了表征,结果显示器件具有开启电压低、色纯度高等特点.结合测试数据,对量子点发光二极管进行了器件结构建模,利用隧穿模型及空间电荷限制电流模型对实验结果进行了分析,研究了器件中载流子的注入与传输机理.器件测试与仿真结果表明:各功能层厚度会影响载流子在量子点层的注入平衡,同时器件中载流子的注入与传输存在一转变电压,当外加电压低于转变电压时,器件中载流子的注入主要符合隧穿模型;当外加电压高于转变电压时,器件中载流子的注入主要符合空间电荷限制电流模型.研究结果验证了器件结构建模的合理性,可以利用仿真的方法进行器件结构优化并确定相关参数,这对器件性能的提高具有指导意义.  相似文献   

8.
采用溶液法旋涂薄膜、真空蒸镀铝电极,制备了ITO/PEDOT∶PSS/空穴传输材料/量子点/纳米氧化锌(ZnO Nanoparticles)/Al结构的量子点发光二极管(QLED)器件。对比了不同纳米氧化锌分散剂对器件性能的影响。当用乙醇和乙醇胺分散氧化锌时,对量子点层破坏较小,器件的亮度最高达22 940cd/m2,电流效率达28.9cd/A。研究了在聚乙烯咔唑(PVK)中掺杂不同比例4,4′-环己基二[N,N-二(4-甲基苯基)苯胺](TAPC)器件的发光特性。在PVK中掺杂TAPC材料能够促进器件空穴传输以及电子空穴注入平衡,当PVK∶TAPC=3∶1时,器件的空穴传输层形貌较为平整,亮度较高;当PVK∶TAPC=1∶1时,器件的开启电压最低。通过对器件膜层表面形貌以及电学、光学性能的对比,分析了电荷传输层优化对器件特性改善的原因。  相似文献   

9.
溶液加工法制备的胶体半导体量子点(QD)具有低成本和广泛应用于多种电子和光电器件的潜在优势,但是QD表面用作防止团聚的长链配体反而大大降低了QDTFT的载流子迁移率.论文介绍了量子点的制备和量子点TFT的制备,总结了以硫醇、胺或金属硫族化物对QD表面的长链配体进行交换,向QD活性层掺杂In或Sn以增加载流子,以卤族元素...  相似文献   

10.
分别在ITO与NPB间加入高迁移率的m-MTDATA:x%4F-TCNQ来增强器件的空穴注入,在阴极和发光层之间加入高迁移率的Bphen:Liq层增强器件的电子注入,制备了结构为ITO/m-MTDATA:x%4F-TCNQ/NPB/Alq_3/Bphen:Liq/LiF/Al的有机发光器件.研究了传输层的单载流子器件行为,同时,由于注入的电子和空穴数量偏离平衡,器件的整体效率也会受到影响,在实验中通过调节4F-TCNQ的质量百分比,来调控空穴的注入和传输,使载流子达到了较好的平衡.器件的最大电流效率和流明效率分别达到了6.1 cd/A和5.2 lm/W.  相似文献   

11.
In the study of hybrid quantum dot light‐emitting diodes (QLEDs), even for state‐of‐the‐art achievement, there still exists a long‐standing charge balance problem, i.e., sufficient electron injection versus inefficient hole injection due to the large valence band offset of quantum dots (QDs) with respect to the adjacent carrier transport layer. Here the dedicated design and synthesis of high luminescence Zn1?x CdxSe/ZnSe/ZnS QDs is reported by precisely controlled shell growth, which have matched energy level with the adjacent hole transport layer in QLEDs. As emitters, such Zn1?xCdxSe‐ based QLEDs exhibit peak external quantum efficiencies (EQE) of up to 30.9%, maximum brightness of over 334 000 cd m?2, very low efficiency roll‐off at high current density (EQE ≈25% @ current density of 150 mA cm?2), and operational lifetime extended to ≈1 800 000 h at 100 cd m?2. These extraordinary performances make this work the best among all solution‐processed QLEDs reported in literature so far by achieving simultaneously high luminescence and balanced charge injection. These major advances are attributed to the combination of an intermediate ZnSe layer with an ultrathin ZnS outer layer as the shell materials and surface modification with 2‐ethylhexane‐1‐thiol, which can dramatically improve hole injection efficiency and thus lead to more balanced charge injection.  相似文献   

12.
Solution-processed blue quantum dot light-emitting diodes (QLEDs) suffer from low device efficiency, whereas the balance of electron and hole injection is critical for obtaining high efficiency. Herein, synergistical double hole transport layers (D-HTLs) are employed, which use poly(9-vinylcarbazole) (PVK) stacked on poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-(4,4'-(N-(4-butylphenyl) (TFB). The fabrication of D-HTLs is achieved by using dimethyl formamide (DMF) as the solvent for PVK, with which the underlying TFB layer almost remains unwashed and undamaged during the spin-coating process of PVK layer. TFB/PVK D-HTLs form the stepwise energy level for hole injection, which reduces the hole injection barrier and favors the carrier balance in the emission layer (EML). The optimized blue QLED with TFB/PVK D-HTLs shows a maximum external quantum efficiency (EQE) of 13.7%, which is 3-fold enhancement compared to that of the control device with single TFB HTL. The enhancement of the QLED performance can be attributed to the improvement of surface morphology and charge injection balance for the stepwise D-HTLs based QLEDs. This work manifests the positive effect on performance boost by selecting appropriate solvents towards stepwise D-HTLs formation and paves the way to fabricate highly efficient all-solution processed light emitting diodes.  相似文献   

13.
Injecting holes from the hole transport layer (HTL) into the quantum dot (QD) emitting layer in quantum dot light-emitting diodes (QLEDs) is considered challenging due to the presence of a relatively high hole injection barrier at the HTL/QD interface. However, QLEDs with exceptional brightness and efficiency are achieved, prompting a reevaluation of the traditional hole injection mechanisms. This study examines the hole injection mechanism in QLEDs using a combination of experiments and simulations. The results demonstrate that the applied bias significantly reduces the barrier height between the highest occupied molecular orbital level of the HTL and the valence band (VB) of the QDs, facilitating hole injection. The bending of the lowest unoccupied molecular orbital energy level of the HTL at the HTL/QD interface confines electrons within the QD, effectively minimizing leakage current. Additionally, the triangle-shaped potential barrier arising from the bending of the VB energy level of the QDs creates favorable conditions for hole–tunneling injection. Moreover, both simulations and experiments consistently demonstrate that the predominant pathway for hole injection from the HTL to the QDs in the QLED device involved thermally assisted tunneling. This study is important to understand the hole injection mechanism in QLEDs.  相似文献   

14.
Stabilization is one critical issue that needs to be improved for future application of colloidal quantum dot (QD)‐based light‐emitting diodes (QLEDs). This study reports highly efficient and stable QLEDs based on solution‐processsed, metal‐doped nickel oxide films as hole injection layer (HIL). Several kinds of metal dopants (Li, Mg, and Cu) are introduced to improve the hole injection capability of NiO films. The resulting device with Cu:NiO HIL exhibits superior performance compared to the state‐of‐the‐art poly(3,4‐ethylenedioxythiophene):poly(styrene‐sulfonate) (PEDOT:PSS)‐based QLEDs, with a maximum current efficiency and external quantum efficiency of 45.7 cd A?1 and 10.5%, respectively. These are the highest values reported so far for QLEDs with PEDOT:PSS‐free normal structure. Meanwhile, the resulting QLED shows a half‐life time of 87 h at an initial luminance of 5000 cd m?2, almost fourfold longer than that of the PEDOT:PSS‐based device.  相似文献   

15.
The poor film formation of CdSe/ZnS quantum dots (QDs) during spin-coating makes a substantial impact on the device performance of quantum dot light-emitting diodes (QLEDs). This work proposes a method to improve the morphology of the quantum dot light-emitting layer (EML) by adding small organic molecular 4,4''-Bis(9H-carbazol-9-yl) biphenyl (CBP) into the layer. Its surface roughness reduces from 6.21 nm to 2.71 nm, which guarantees a good contact between hole transport layer (HTL) and EML. Consequently, the CdSe/ZnS QDs:CBP based QLED achieves maximum external quantum efficiency (EQE) of 5.86%, and maximum brightness of 10 363 cd/m2. It is demonstrated that the additive of small organic molecules could be an effective way to improve the brightness and the efficiency of QLEDs.  相似文献   

16.
High performance quantum dot light emitting diodes (QD-LED) are being considered as a next-generation technology for energy efficient solid-state lighting and displays. In recent years, cadmium (Cd)-based QLEDs have made great progress in performance, which is close to commercial applications. However, the performance of environmentally friendly Cd-free QD-LED still needs to be improved. In this letter, using InP/ZnS quantum dots (QDs), an environmentally friendly red QDs material, as the light emitting layer, low-cost all-solution processed red InP/ZnS QD-LED are fabricated. The optimized device with a hybrid multilayered structure employing an organic double hole transport layer (HTL) with doping small molecules (TFB/PVK:TAPC) and an inorganic ZnMgO nanoparticles (NPs) electron transport layer (ETL), here TFB, PVK and TAPC represent poly [(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4’-(N-(p-butylphenyl))-diphenylamine)], poly (9-vinlycarbazole) and 1,1-bis [4-[N,N′-di (p-tolyl)amino]phenyl]-cyclohexane, respectively. The best device exhibits a peak current efficiency (CE) of 7.58 cd A−1, which is 2.4 times higher than the control device using PVK (HTL) and ZnO (ETL). At the same time, turn-on voltage dropped from 2.8 V (control devices) to 2.4 V. These superb QD-LED performances originate not only from the improved hole injection by the introduction of a double hole layer and the reduced the quenching of excitons by using ZnMgO NPs ETL but also from increasing the hole mobility with doping of small molecule materials in PVK to balance the carrier transportation. This work provides a simple and feasible idea with optimization the carrier transport for realizing high-efficiency QD-LED devices.  相似文献   

17.
Colloidal quantum dot light-emitting diodes (QLEDs) are reported with improved external quantum efficiencies (EQE) and efficiency roll-off under high current densities by introducing a thermally-evaporated organic cathode interfacial material (CIM) Phen-NaDPO. QLEDs with this new CIM modified Al cathode were fabricated, giving an upwards of 25% enhancement in the EQE relative to the bare Al device. Ultraviolet photoemission spectroscopy (UPS) suggests that this material can effectively lower the work function of Al, therefore facilitating the electron injection in QLEDs. Furthermore, Phen-NaDPO was introduced into the LiF/Al device to afford better balanced hole/electron injection in the emitting layer. Consequently, the QLEDs with the organic CIM/LiF/Al cathode further increased EQE and current efficiency by 44% and 52%, respectively, with higher luminance and lower efficiency roll-off under high current densities.  相似文献   

18.
Solution-processed colloidal quantum dot light-emitting diodes (QLED) have attracted many attentions with significant progress in recent years. However, QLED devices still face some challenges. The energy barrier between Cd-base quantum dots (QDs) and commonly used hole transport materials is larger than that between QDs and electron transport materials, which leads to the imbalance of carriers in the light emitting layer (EML) and the low performance of QLED devices. Herein, we report a simple strategy to improve the device performance by doping small molecule transport material 4,4′-cyclohexylidenebis[N,N-bis(p-tolyl)aniline] (TAPC) into red CdSe/ZnS QDs. The optimized red QLED devices with TAPC-doped emissive layer at a ratio of 3.2 wt% achieve 20.0 cd/A of maximum current efficiency, 16.6 lm/W of power efficiency and 15.7% of external quantum efficiency, which is 30%, 58% and 33% higher than the control device. The improved performance of devices can be ascribed to the increase of hole current density, decrease of leakage electrons and more balanced quantity of carriers in EML. This work put forward a viewpoint to improve the performance of QLED devices via doping high hole mobility materials into emission layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号