首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In the final stages of thymic development, immature T cells undergo three distinct processes (positive selection, negative selection, and lineage commitment) that all depend on interactions of thymocyte TCRs with MHC molecules. It is currently thought that TCRs are preferentially restricted by either MHC class I or class II molecules. In this report, we present direct evidence that the TCR previously described as H-Y/H-2Db specific cross-reacts with H-2IAb if expressed in CD4+ cells. We also demonstrate an increase in thymocyte numbers in H-Y TCR-trangenic mice deficient in MHC class II, suggesting a relatively discrete form of negative selection by MHC class II compared with that induced by H-Y/H-2Db. We propose that inability to generate CD4+ T cells expressing H-Y TCR in different experimental settings may be due to tolerance to self-MHC class II. These results, therefore, support an intriguing possibility that tolerance to self may influence and/or interfere with the outcome of the lineage commitment.  相似文献   

3.
Positive selection is an obligatory step during intrathymic T cell differentiation. It is associated with rescue of short-lived, self major histocompatibility complex (MHC)-restricted thymocytes from programmed cell death, CD4/CD8 T cell lineage commitment, and induction of lineage-specific differentiation programs. T cell receptor (TCR) signaling during positive selection can be closely mimicked by targeting TCR on immature thymocytes to cortical epithelial cells in situ via hybrid antibodies. We show that selection of CD4 T cell lineage cells in mice deficient for MHC class I and MHC class II expression can be reconstituted in vivo by two separable T cell receptor signaling steps, whereas a single TCR signal leads only to induction of short-lived CD4+CD8lo intermediates. These intermediates remain susceptible to a second TCR signal for 12-48 h providing an estimate for the duration of positive selection in situ. While both TCR signals induce differentiation steps, only the second one confers long-term survival on immature thymocytes. In further support of the two-step model of positive selection we provide evidence that CD4 T cell lineage cells rescued by a single hybrid antibody pulse in MHC class II-deficient mice are pre-selected by MHC class I.  相似文献   

4.
CD99 is a cell surface molecule involved in the aggregation of lymphocytes and apoptosis of immature cortical thymocytes. Despite its high level expression on immature cortical thymocytes, the functional roles of this molecule during thymic selection are only now being elucidated. Examination of the effects of CD99 engagement on the expression kinetics of the TCR and MHC class I and II molecules, which are involved primarily in thymic positive selection, revealed a marked up-regulation of these proteins on the surface of immature thymocytes. This increase was the result of accelerated mobilization of molecules stored in cytosolic compartments to the plasma membrane, rather than increased RNA and protein synthesis. Confocal microscopic analysis revealed the changes in subcellular distribution of these molecules. When CD99 was engaged, TCR and MHC class I and II molecules were concentrated at the plasma membrane, particularly at cell-cell contact sites. The TCRlow subpopulation of immature double positive thymocytes was much more responsive to CD99-mediated up-regulation than was the TCRhigh population. These findings suggest that CD99-dependent up-regulation may have possible implication in positive selection during thymocyte ontogeny.  相似文献   

5.
In the thymus, immature T cells are positively and negatively selected by multiple interactions between their Ag receptors (TCRs) and self MHC/peptide complexes expressed on thymic stromal cells. Here we show that in the milieu of negative selection on physiological self class II MHC/peptide complexes (Abwt), a single class II/peptide complex AbEp52-68 positively selects a number of TCRs with various Ag specificities. This TCR repertoire is semidiverse and not biased toward Ep-like Ags. Our finding implies that the degeneracy of positive selection for peptide ligands exceeds peptide-specific negative selection and is essential to increase the efficiency and diversity of the repertoire so that T cells with the same Ag specificity can be selected by different self MHC/ peptide complexes.  相似文献   

6.
Lupus-prone mice develop a systemic autoimmune disease that is dependent upon the B cell help provided by autoreactive alphabeta CD4+ T cells. Since autoreactive T cells with high affinity for self peptides are normally deleted in the thymus, their presence in these mice suggests the possibility that intrathymic negative selection may be defective. Here, we directly compared central T cell tolerance in response to a conventional peptide Ag in lupus-prone MRL/MpJ mice with a nonautoimmune strain using an MHC class II-restricted TCR transgene. Our results did not demonstrate any defects after Ag exposure in the induction of intrathymic deletion of immature CD4+ CD8+ thymocytes, in TCR down-regulation, or in the number of apoptotic thymocytes in MRL/MpJ compared with nonautoimmune mice. Furthermore, we found that the lpr mutation had no influence upon the Ag-induced thymic deletion of immature thymocytes. These data support the notion that T cell autoreactivity in MRL/MpJ mice is caused by defects in peripheral control mechanisms.  相似文献   

7.
8.
T cell selection is thought to be determined through the interaction between TCR and Ag/MHC. However, the contribution of the level of TCR signal to thymic selection remains unclear. To address this issue, we analyzed T cell selection of male Ag (HY)-specific TCR transgenic (HYTg) mice crossed with CD3 zeta-deficient (zeta KO) mice (HYTg/zeta KO), which have impaired signaling through TCR. In male HYTg/zeta KO mice, the number of thymocytes was comparable to that in normal mice, and almost all the peripheral T cells were HY specific, although these positively selected cells were anergic to male Ag. From these observations, the decrease in TCR signaling by CD3 zeta deficiency resulted in both the avoidance of negative selection and the acquisition of positive selection of autoreactive T cells in male HYTg/zeta KO mice. There was a shift of T cell selection from positive to no selection of HY-specific T cells in female HYTg/zeta KO mice also. Collectively, these findings suggest that the level of TCR signal directly regulates T cell selection; furthermore, the findings have integrated the models of T cell selection into a concept based on the quantity of TCR signal.  相似文献   

9.
Thymic development of T lymphocytes progresses as a consequence of both TCR-mediated and non-TCR-mediated interactions between thymocytes and stromal cells. As relB-deficient mice appear to lack thymic medullary epithelium and mature dendritic cells, we studied the effect of this "cortex-only" thymus on T cell development. Two major consequences were observed. First, in both relB mutant and TCR transgenic/relB mutant mice, positive selection of both TCR alpha beta and delta gamma T cells appeared to proceed normally, with export of fully functional T cells to the periphery, suggesting that the thymic medullary stromal cells are not required for full maturation of T cells nor is an organized medullary compartment required for accumulation of mature single positive CD4 and CD8 T cells. Second, thymic negative selection was impaired, as evidenced by significant autoreactive proliferative responses to normal spleen stimulators. Peripheral T cells in relB mutant mice showed an unusually high proportion of CD69+ and CD44high cells. While some of these cells may be autoreactive T cells, most of the cells appeared to be activated by cytokines produced by relB mutant nonlymphoid cells, as the effect is minimized in relB mutant bone marrow chimeras. In sum, while the TCR-mediated steps in T cell maturation require both thymic cortex and medulla (epithelium and dendritic cells) for normal positive and negative selection of the repertoire, non-TCR-mediated interactions in the thymic cortex alone are sufficient to generate mature functional T cells.  相似文献   

10.
CD8+ T cells mediate some of the damage to the lung epithelium following respiratory syncytial virus (RSV) infection. Since CD8+ T cells recognize antigen-laden class I MHC molecules on the target cells, we examined in this study the expression of class I MHC by RSV-infected respiratory epithelial cells. Respiratory epithelial cell lines and bronchial epithelial cells from normal human tissue responded to RSV infection with an increased expression of class I MHC as determined by flow cytometry and immunoprecipitation of class I MHC from metabolically radiolabeled cells. The increase in class I MHC expression was dependent on infectious, replicating virus. UV-irradiated culture supernatants from RSV-infected A549 cells, when added to fresh A549 cell cultures, induced an increase in class I MHC expression by those cells. The class I MHC increasing activity within supernatants from A549 cells was due, in large part, to IFN-beta, and to a lesser extent to IL-1 alpha. The addition of neutralizing Abs to both cytokines completely blocked the increase in class I MHC expression by cells treated with the above-mentioned supernatants. These results demonstrate that RSV infection elicits IFN-beta production by respiratory epithelial cells, which in turn leads to an increase in their synthesis of class I MHC, which would facilitate their recognition and lysis by RSV-specific CD8+ T cells.  相似文献   

11.
Recent evidence suggests that TCR down-regulation directly reflects the number of TCRs that have engaged MHC/peptide ligand complexes. Here, we examined the influence of defined peptides on thymic selection based on their ability to induce differential TCR internalization. Our results demonstrate that there is a direct correlation: peptides that induce strong TCR down-regulation are most efficient at mediating negative selection, whereas peptides that induce suboptimal TCR internalization are more efficient at triggering positive selection. As a consequence of suboptimal TCR internalization, a proportion of TCR complexes that remain on the cell surface may be able to relay continual signals required for survival and differentiation. In addition, we show that the magnitude of Ca2+ influx set by these peptides reflects the hierarchy of TCR down-regulation and correlates with positive vs negative selection of transgenic thymocytes. Together, our data suggest that T cell selection is mediated by differing intensities of the same TCR-mediated signal, rather than by distinct signals.  相似文献   

12.
Thymic epithelium is involved in negative selection, but its precise role in selecting the CD4 T cell repertoire remains elusive. By using two transgenic mice, we have investigated how medullary thymic epithelium (mTE) and bone marrow (BM)-derived cells contribute to tolerance of CD4 T cells to nuclear beta-galactosidase (beta-gal). CD4 T cells were not tolerant when beta-gal was expressed in thymic BM-derived cells. In contrast, CD4 T cells of mice expressing beta-gal in mTE were tolerized. Tolerance resulted from presentation of endogenous beta-gal by mTE cells but not from cross-priming. mTE cells presented nuclear beta-gal to a Th clone in vitro, while thymic dendritic cells did not. The data indicate that mTE but not thymic BM-derived cells can use a MHC class II endogenous presentation pathway to induce tolerance to nuclear proteins.  相似文献   

13.
Interaction of the TCR on immature thymocytes with ligands on antigen presenting cells can lead to different fates including positive and negative selection. The affinity of the selecting ligands plays an important role in determining these outcomes. We used the 2C TCR transgenic model to evaluate the efficacy of ligands with widely differing affinity (3 x 10(3) - 2 x 10(6) M-1) for the 2C TCR in mediating thymic negative and positive selection. Our results support the conclusions that the deletion of immature thymocytes is not only mediated by high-affinity ligands but also by low-affinity/avidity ligands. However, high- and low-affinity ligands differ in their requirements for negative selection. We also present evidence that positive selection is not an all or none process but depending on the strength of interaction between the ligand and the TCR during the positive selection process can result in single positive thymocytes that are at different stages of functional maturity.  相似文献   

14.
The mechanism by which particular MHC class II alleles mediate susceptibility to a given autoimmune disease is unknown. During the past year, reports have indicated that the effects of MHC class II alleles which protect against type I diabetes in the nonobese diabetic mouse strain may, in some cases, be due to negative selection of diabetogenic T cell receptors and, in other cases, to positive selection of other T cells with a suppressive action on the diabetic process. Progress towards understanding the mechanisms of susceptibility continues to lag.  相似文献   

15.
To study the relation between the form of an Ag and the response to it, we compared presentation in vitro with hen egg lysozyme (HEL)-specific T cells from TCR transgenic mice of free HEL and liposome-encapsulated HEL by different APC. HEL-specific splenic B cells or bone marrow-derived dendritic cells were incubated with free HEL or HEL-containing liposomes targeted by Ab to either surface Ig, the Fc receptor, or MHC class I and II molecules. Ag presentation by HEL-specific B cells was at least 100-fold more efficient for HEL in surface Ig-targeted liposomes than free HEL taken up by the same receptor or HEL in liposomes targeted to class I or II molecules. Ag presentation by dendritic cells from Fc receptor-targeted vesicles was augmented 1,000-10,000-fold compared with free Ag or nontargeted liposomes, but presentation was also efficient when Ag was targeted to class I or II molecules. These results indicate that Ag-specific B cells and dendritic cells can be equally efficient in stimulating IL-2 production by Ag-specific T cells from unimmunized TCR transgenic mice when the Ag is multivalent and taken up by appropriate receptors. In contrast to B cells, which require engagement of surface Ig for optimal presentation, dendritic cells may present Ag by means of several different cell surface molecules.  相似文献   

16.
During the differentiation of thymocytes to mature T cells the processes of positive and negative selection result in signals that either protect thymocytes from cell death, or delete, through apoptosis, thymocytes with self-reactive T cell receptors (TCR). Glucocorticoids have been shown to induce thymocyte apoptosis and are produced within the thymic microenvironment. Furthermore, steroid-induced apoptosis of thymocytes has been suggested as a potential mechanism for removal of nonselected thymocytes. In this report, we demonstrate that thymocytes can be rescued from glucocorticoid-induced apoptosis by incubation with cells that express high levels of B7-1 or B7-2. In addition, the ability to be rescued by B7-1 and/or B7-2 can precede expression of the TCR. We demonstrate that CD3(+)-depleted or CD3+/ TCR-beta(+)-doubly depleted thymocytes can be rescued from glucocorticoid-induced apoptosis through the interaction of CD28 or CTLA-4 on thymocytes with cells bearing high levels of B7-1 or B7-2. Furthermore, these transfected cells are major histocompatibility complex (MHC) class II negative and, while they may express MHC class I, there is no preferential rescue of CD8+ thymocytes in the presence of glucocorticoids. Together, these data suggest that the rescue of thymocytes from glucocorticoids can be independent of the TCR. We also demonstrate that, in addition to CD28, CTLA-4 is expressed on thymocytes, suggesting that rescue from glucocorticoid-induced cell death can be mediated by both CD28 and CTLA-4. A CTLA-4Ig fusion protein which binds to both B7-1 and B7-2 was shown to completely block the rescue of thymocytes from glucocorticoid-induced cell death. Therefore, we conclude that interactions between B7-1/B7-2 and CD28/CTLA-4 are sufficient and necessary for rescue of thymocytes from glucocorticoid-induced cell death.  相似文献   

17.
A variety of cell types expressing MHC class II molecules is known to function as APC in vitro. We employed the Ig kappa gene enhancer and promoter to target the class II E alpha gene, and thereby I-E, exclusively to B cells to address their APC function in vivo. Although transgenic I-E was expressed on B lymphocytes, we unexpectedly obtained I-E on thymic medullary epithelium but not macrophages and at low frequency on dendritic cells. Using these transgenic mice, we constructed bone marrow irradiation chimeras with I-E expressed only on medullary epithelium, in order to determine the role of this cell type in tolerance by clonal deletion in the thymus. Although it is accepted that bm-derived cells play a primary role in deletion, and thymic epithelium can delete clones to a lesser degree, the role of cortical vs medullary thymic epithelium has not been directly dissected. We demonstrate that medullary epithelium alone can tolerize by partial deletion of I-E-reactive V beta 5+ T cells. These results indicate a role for medullary epithelium in deletion during the later stages of thymic development, and support the notion that positive and negative selection of developing T cells can occur in distinct temporal and anatomic compartments.  相似文献   

18.
The CD8 molecule is expressed either as an alpha/alpha homodimer or an alpha/beta heterodimer on thymocytes and cytotoxic T cells, and functions as a coreceptor in concert with TCR for binding the MHC class I/peptide complex. Although CD8alpha/beta heterodimers have been shown to be more effective coreceptors, the precise role of the beta-chain in TCR-mediated thymic maturation and T cell activation is not understood. To understand the role of CD8beta in mediating CD8/MHC class I interaction, we examined whether cell surface CD8alpha/beta heterodimer promotes better cell-cell adhesion with MHC class I than the CD8alpha/alpha homodimer. The abilities of different forms of CD8 to adhere to MHC class I were measured with a cell-cell binding assay. Using a wild-type CD8beta and -alpha, we found that CD8alphabeta heterodimers did not mediate greater cell-cell adhesion than CD8alphaalpha homodimers. Furthermore, we found that chimeric CD8beta-alpha homodimers afforded no detectable binding. These results do not support the idea that CD8alphabeta binding to MHC class I is greater than that of CD8alphaalpha. Rather, they point to an alternative explanation in which CD8beta may play an role in promoting CD8/TCR interaction and/or in signaling/regulatory pathways.  相似文献   

19.
20.
It is well established that lymphoid dendritic cells (DC) play an important role in the immune system. Beside their role as potent inducers of primary T cell responses, DC seem to play a crucial part as major histocompatibility complex (MHC) class II+ "interdigitating cells" in the thymus during thymocyte development. Thymic DC have been implicated in tolerance induction and also by some authors in inducing major histocompatibility complex restriction of thymocytes. Most of our knowledge about thymic DC was obtained using highly invasive and manipulatory experimental protocols such as thymus reaggregation cultures, suspension cultures, thymus grafting, and bone marrow reconstitution experiments. The DC used in those studies had to go through extensive isolation procedures or were cultured with recombinant growth factors. Since the functions of DC after these in vitro manipulations have been reported to be not identical to those of DC in vivo, we intended to establish a system that would allow us to investigate DC function avoiding artificial interferences due to handling. Here we present a transgenic mouse model in which we targeted gene expression specifically to DC. Using the CD 11c promoter we expressed MHC class II I-E molecules specifically on DC of all tissues, but not on other cell types. We report that I-E expression on thymic DC is sufficient to negatively select I-E reactive CD4+ T cells, and to a less complete extent, CD8+ T cells. In contrast, it only DC expressed I-E in a class II-deficient background, positive selection of CD4+ T cells could not be observed. Thus negative, but not positive, selection events can be induced by DC in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号