首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
The influence of lubricants circulating within refrigerating plant on boiling and convective condensation mechanisms, and the lack of data supplied by manufacturers mean that predictive models have to be used in order to determine the thermodynamic and transport properties of lubricating oils and of mixtures of refrigerants and oils. This study provides a series of correlations making it possible to calculate the properties of oils. This article also compares literature references to a few methods used to determine the properties of such mixtures.  相似文献   

2.
A 1-D analysis for the prediction of ejector performance at critical-mode operation is carried out in the present study. Constant-pressure mixing is assumed to occur inside the constant-area section of the ejector and the entrained flow at choking condition is analyzed. We also carried out an experiment using 11 ejectors and R141b as the working fluid to verify the analytical results. The test results are used to determine the coefficients, ηp, ηs, φp and φm defined in the 1-D model by matching the test data with the analytical results. It is shown that the1-D analysis using the empirical coefficients can accurately predict the performance of the ejectors.  相似文献   

3.
This paper discusses an ejector cycle refrigeration machine that can use a wide range of refrigerants including halocarbons. The feature of such a system is the possibility of using a low grade heat source such as solar energy and waste heat to operate the system. A theoretical analysis was carried out to select a suitable refrigerant for the system. The influence of boiler, condenser and evaporator temperatures on system heat transfer is investigated experimentally under different operating conditions. The experimental machine uses R113 as a working refrigerant.  相似文献   

4.
The extended corresponding states (ECS) model of Huber et al. (Huber, M.L., Friend, D.G., Ely, J.F. Prediction of the thermal conductivity of refrigerants and refrigerant mixtures. Fluid Phase Equilibria 1992;80:249–61) for calculating the thermal conductivity of a pure fluid or fluid mixture is modified by the introduction of a thermal conductivity shape factor which is determined from experimental data. An additional empirical correction to the traditional Eucken correlation for the dilute-gas conductivity was necessary, especially for highly polar fluids. For pure fluids, these additional factors result in significantly improved agreement between the ECS predictions and experimental data. A further modification for mixtures eliminates discontinuities at the pure component limits. The method has been applied to 11 halocarbon refrigerants, propane, ammonia, and carbon dioxide as well as mixtures of these fluids. The average absolute deviations between the calculated and experimental values ranged from 1.08 to 5.57% for the 14 pure fluids studied. Deviations for the 12 mixtures studied ranged from 2.98 to 9.40%. Deviations increase near the critical point, especially for mixtures.  相似文献   

5.
We propose in this article an absorption chiller operating with binary alkane mixtures as an alternative to compression machines. It is an installation using low-level energy at a temperature below 150 °C (waste heat or solar energy) and operating with environmentally friendly fluids. Ten mixtures are considered and compared with two cooling mediums of the condenser and the absorber: the ambient air at 35 °C and the water at 25 °C. For an air-cooled chiller, the COP reaches 0.37 for the n-butane/octane system. This value remains 27% lower than that of an ammonia/water installation operating under the same conditions. For a water-cooling chiller, the n-butane/octane and propane/octane systems give a COP of about 0.63, which is comparable to that of the ammonia/water system. When n-butane is used as refrigerant, the machine works at a pressure under 5 bars, which is an advantage compared with machines working with ammonia/water mixtures.  相似文献   

6.
Multi-stage heat pumps composed of a condenser, evaporator, compressor, suction line heat exchanger, and low and/or high stage economizers are studied by computer simulation. Their thermodynamic performance and design options are examined for various working fluids. In the simulation, HCFC22/HCFC142b and HFC134a are studied as an interim and long term alternatives for CFC12 while HFC32/HFC134a and HFC125/HFC134a are studied as long term alternatives for HCFC22. The results indicate that the three-stage super heat pump with appropriate mixtures is up to 27.3% more energy efficient than the conventional single-stage system with pure fluids. While many factors contribute to the performance increase of a super heat pump, the most important factor is found to be the temperature matching between the secondary heat transfer fluid and refrigerant mixture, which is followed by the use of a low stage economizer and suction line heat exchanger. The contribution resulting from the use of a high stage economizer, however, is not significant. With the suction line heat exchanger, the system efficiency increases more with the fluids of larger molar liquid specific heats. From the view point of volumetric capacity and energy efficiency, a 40%HCFC22/60%HCFC142b mixture is proposed as an interim alternative for CFC12 while a 25%HFC32/75%HFC134a mixture is proposed as a long term alternative for HCFC22.  相似文献   

7.
In a recent study, it was shown by the authors that perfect glide matching of heat transfer fluid and the refrigerant is difficult in condensers and evaporators for many zeotropic mixtures and also that pinch points can occur in both the condensers and evaporators due to the non-linear variation of enthalpy during phase change. Also, a simple method was presented for predicting the occurrence of pinch points. In this paper, the influence of mixture composition on occurrence of pinch points is studied. From the thermodynamic analysis, it is shown that multi-component mixtures are preferable over many wide boiling binary mixtures for various applications from the point of view of pinch points and glide matching. The results are illustrated with a number of examples.  相似文献   

8.
The rotary process presented here is designed for continuous operation and to use the concept of a heat regeneration cycle developed for solid sorption cold production systems. Based on the analysis of the thermodynamic cycle followed by the reagent, the system is modeled in the form of counter-flow heat exchangers in series. This allows an estimate of the energy performance of the process in terms of coefficient of performance (COP) and cold production capacity. It appears that for a given set of thermodynamic operating conditions, the number of transfer units (NTU) of the heat exchangers is the parameter, which conditions the value of the COP. A comparison between the rotary system by adsorption and by chemical reaction helps to select the ideal reagent according to the temperature level for cold production.  相似文献   

9.
The main purpose of this study is to investigate the performance of an autocascade refrigeration system using zeotropic refrigerant mixtures of R744/134a and R744/290. One of the advantages of this system is the possibility of keeping the highest pressure of the system within a limit by selecting the composition of a refrigerant mixture as compared to that in the vapor compression system using pure carbon dioxide. Performance test and simulation have been carried out for an autocascade refrigeration system by varying secondary fluid temperatures at evaporator and condenser inlets. Variations of mass flow rate of refrigerant, compressor power, refrigeration capacity, and coefficient of performance (COP) with respect to the mass fraction of R744 in R744/134a and R744/290 mixtures are presented at different operating conditions. Experimental results show similar trends with those from the simulation. As the composition of R744 in the refrigerant mixture increases, cooling capacity is enhanced, but COP tends to decrease while the system pressure rises.

Résumé

The main purpose of this study is to investigate the performance of an autocascade refrigeration system using zeotropic refrigerant mixtures of R744/134a and R744/290. One of the advantages of this system is the possibility in keeping the highest pressure of the system within a limit by selecting the composition of a refrigerant mixture as compared to that in the vapor compression system using pure carbon dioxide. Performance test and simulation have been carried out for an autocascade refrigeration system by varying secondary fluid temperatures at evaporator and condenser inlets. Variations of mass flow rate of refrigerant, compressor power, refrigeration capacity, and coefficient of performance (COP) with respect to the mass fraction of R744 in R744/134a and R744/290 mixtures are presented at different operating conditions. Experimental results show similar trends with those from the simulation. As the composition of R744 in the refrigerant mixture increases, cooling capacity is enhanced, but COP tends to decrease while the system pressure rises.  相似文献   


10.
11.
In the present study, two empirical correlations from the test results of 15 ejectors are derived for the performance prediction of ejectors using R141b as the working fluid. The ratio of the hypothetical throat area of the entrained flow to the nozzle throat area Ae/At, the geometric design parameter of the ejector A3/At, and the pressure ratios Pg/Pe and Pc*/Pe are used to correlate the performance of the ejector. The prediction of the entrainment ratio ω using the correlations is within ±10% error. A method of calculation for the ejector design using the correlations is also developed. R141b is shown in the present study to be a good working fluid for an ejector. The measured ω for the ejectors used in the present study can reach as high as 0.54 at Pg=0.465 MPa (84°C), Pc*=0.087 MPa (28°C) and Pe=0.040 MPa (8°C). For Pg=0.538 MPa (90°C), Pc*=0.101 MPa (32°C) and Pe=0.040 MPa (8°C), ω reaches 0.45.

Résumé

Dans cette étude, on a établi deux corrélations empiriques à partir des résultats expérimentaux obtenus utilisant 15 éjecteurs; ces corrélations ont été utilisées ensuite pour prédire la performance d'éjecteurs utilisant le R141b comme fluide frigorigène. Les rapports Ae/At (section de passage du fluide entraîné rapporté à la section théorique du col de l'éjecteur), et A3/At (section de sortie de l'éjecteur rapporté à la section théorique du col de l'éjecteur) et les relations entre pressions Pg/Pe et Pc*/Pe sont utilisés pour trouver la corrélation de la performance de l'éjecteur. La prévision du taux d'entraînement à partir des corrélations est précise à la hauteur de ±10%. Les auteurs ont également développé une méthode de calcul permettant de concevoir des éjecteurs à partir des corrélations. On a montré dans cette étude que le R141b s'avère être un fluide actif efficace pour cette utilisation. Le ω mesuré des éjecteurs utilisés dans cette étude peuvent atteindre 0.54 à Pg=0.465 MPa (84°C), Pc*=0.087 MPa (28°C) et Pe=0.040 MPa (8°C). Pour Pg=0.538 MPa (90°C), Pc*=0.101 MPa (32°C) et Pe=0.040 MPa (8°C), ω atteint 0.45.  相似文献   

12.
The use of non-azeotropic mixed refrigerants is becoming of greater interest due to the phase-out of CFC's, and the lack of suitable environment-friendly pure alternatives. Refrigeration systems may use either pool- or flow-boiling evaporators. Whilst the use of mixtures in flow-boiling systems has been the subject of a significant amount of research, little attention has been paid to pool-boiling systems. This article considers this issue, and identifies a reduction in efficiency that occurs as a result of using mixtures in place of pure fluids. The cause of this problem is examined, and a number of alternative system configurations are evaluated. It is concluded that, in a pool-boiling cycle, a mixed refrigerant will always result in a poorer efficiency than is obtainable with a pure fluid.  相似文献   

13.
This paper describes the development and operation of a rotating double effect absorption chiller, which uses an aqueous solution of mixed metal hydroxides as the absorbent. The design principles are outlined including the operation of the major components and the ways in which the integration of the processes has been achieved. The operation of the fluid management system is described. Experimental performance data are presented from laboratory testing for the machine operating as a chiller.  相似文献   

14.
In this study, 14 refrigerant mixtures composed of R32, R125, R134a, R152a, R290 (propane) and R1270 (propylene) were tested in a breadboard heat pump in an attempt to substitute HCFC22 used in residential air-conditioners. The heat pump was of 3.5 kW capacity with water as the heat transfer fluid (HTF) in the evaporator and condenser that are in a counter current flow configuration. All tests were conducted with the HTF temperatures fixed to those found in the ARI test A condition. Test results show that ternary mixtures composed of R32, R125, and R134a have a 4–5% higher coefficient of performance (COP) and capacity than HCFC22. On the other hand, ternary mixtures containing R125, R134a and R152a have both lower COPs and capacities than HCFC22. R32/R134a binary mixtures show a 7% increase in COP with the similar capacity to that of HCFC22 while R290/R134a azeotrope shows a 3–4% increases in both COP and capacity. The compressor discharge temperatures of the mixtures tested are much lower than those of HCFC22, indicating that these mixtures would offer better system reliability and longer life time than HCFC22. Finally, test results with a suction line heat exchanger (SLHX) indicate that SLHX must be used with special care in air-conditioners since its effect is fluid dependent.  相似文献   

15.
The processes proposed in order to improve the energetic performances of thermochemical cooling sorption systems involve an increase of the technological complexity of the installation that can limit their practical interest. The double effect by contact studied allow to consider high energetic performances, simple working mode and also a good compactness of the installation. The analysis of the theoretical working mode of this process, compared to the classic double effect, permits putting forward both advantages and inconveniences of this new process. These are quantified with the help of results supplied from an experimental pilot.  相似文献   

16.
This article describes the evaluation and comparison of a conventional R12 cross-charged thermostatic valve and an electronic expansion valve using a non-azeotropic refrigerant mixture (NARM); isobutane/propane mixture (CARE30). The superheat temperature setting on an expansion valve needs to compensate for the temperature glide associated with a non-azeotropic refrigerant as these can be of similar magnitude. It is also advisable to increase the superheat setting to make allowance for change in refrigerant composition as a result of preferential refrigerant/oil solubility. The majority of refrigeration systems operate at fixed evaporating temperatures, hence, once superheat setting is trimmed during commissioning, then there should be no further problems associated with evaporation of a non-azeotropic refrigerant provided the system is leak-tight. An R12 expansion valve with a factory superheat setting of 5°C tested over a wide range of evaporating temperatures proved satisfactory in operation with CARE30 after increasing the superheat temperature screw setting equivalent to 5°C.  相似文献   

17.
In this study, computer simulation programs were developed for multi-stage condensation heat pumps and their performance was examined for CFC11, HCFC123, HCFC141b under the same condition. The results showed that the coefficient of performance (COP) of an optimized ‘non-split type’ three-stage condensation heat pump was 25–42% higher than that of a conventional single-stage heat pump. The increase in COP differed among the fluids examined. The improvement in COP was due largely to the decrease in average temperature difference between the refrigerant and water in the condensers, which resulted in a decrease in thermodynamic irreversibility. For the three-stage heat pump, the highest COP was achieved when the total condenser area was evenly distributed to the three condensers. For the two-stage heat pump, however, the optimum distribution of total condenser area varied with working fluids. For the three-stage system, splitting the condenser cooling water for the use of intermediate and high pressure subcoolers helped increase the COP further. When the individual cooling water for the intermediate and high pressure subcoolers was roughly 10% of the total condenser cooling water, the optimum COP was achieved showing an additional 11% increase in COP as compared to that of the ‘non-split type’ for the three-stage heat pump system.  相似文献   

18.
The effects of the wall thickness of stainless steel heat exchanger tubes on the performance of adsorption machines, employing zeolite 4A coatings synthesized on metal heat exchanger tubes, are investigated. A recently developed mathematical model is used to determine the cycle durations when various wall thicknesses of the heat exchanger tubes as well as different zeolite layer thicknesses are utilized. For each case, the power and the COPcycle values of the system are estimated. In general, very high power and quite low COPcycle values are obtained when the proposed arrangement is utilized in the adsorption heat pumps. The zeolite layer thicknesses that may result in obtaining high COPcycle values are generally much higher than the optimum layer thickness value that maximizes the power and the utilization of layers thicker than the optimum value may lead to significant extensions in the cycle durations and hence to a decrease in the power obtained from the system. Decreasing the wall thickness of the heat exchanger tubes increases both the power and the COPcycle values when the optimum zeolite layer thickness for each wall thickness is taken into account. The possibility of such an enhancement will most probably be limited by the minimum wall thickness value that can actually be obtained by the available technology. The COP values of adsorption heat pumps may also be increased by using regenerative processes. Due to the generally low COP values obtained, the proposed arrangement seems especially suitable to be employed in adsorption machines utilizing energy sources of low economical value, such as waste heat. An optimum compromise between the COP value, which is closely related to the operating costs, and the power of the system should be provided, in case more valuable energy sources are utilized.  相似文献   

19.
The paper proposes an original linear phenomenological theory (Ph T) of evolution physical mono-, bi- and particular polycomponent gas–liquid interactions with non-ideal mixture. The expressions of the phenomenological factors (entropy source, force, coefficient and coupled heat and mass transfer currents) are deduced. The theory is particularized to the NH3/H2O and other gas–liquid systems used in the thermal absorption technology. The work's conclusions are listed next. The paper raises the problem of ammonia bubble absorption which is difficult to answer with current theory of interface mass transfer and absorption as a surface phenomenon. The heat and mass transfer at the gas–liquid interface is governed by the thermodynamic force, which applies also to solid–liquid, solid–gas, or liquid–liquid, gas–gas type interactions and continuous or discontinuous media. The paper mentions a postulate referring to the force behavior approaching an ideal point, previously formulated by the author. According to its consequence, the mass and heat currents suffer an ideal point approaching (i.p.a.) effect, not mentioned so far in the specialized literature, consisting in a continuous increase of their absolute value by several percent (for a pure component), to several hundred times (for a binary system) when the interacting system approaches an ideal state, as compared to the values of states which are far from the same ideal point. In this way, “far from equilibrium” becomes synonymous to “low interaction”. The classic assessment of the interface mass transfer by analogy with heat transfer lacks basic physics. The (Ph T) satisfactorily explains the problem of ammonia bubble absorption. Absorption is a mass phenomenon, not a surface one. An intensive way of improving absorption is emphasized, which seeks to promote the i.p.a. effect appearance rather than the extensive way currently used, based on increasing gas–liquid interaction area. To this extent, the bubble absorber is hereby proposed for efficient absorption. The i.p.a. effect existence offers an additional chance for a satisfactory explanation of the Marangoni effect.  相似文献   

20.
This paper describes the influence of a low viscosity polyolester based lubricating oil on the pool boiling heat transfer of the refrigerant R507. The pool boiling heat transfer coefficients for this refrigerant–oil mixture are measured on a smooth tube and on an enhanced tube. The investigation is made for oil mass fractions up to 10% and for saturation temperatures between −28.6°C and +20.1°C. For the smooth tube the heat transfer increases for increasing oil mass fractions up to 3% at lower saturation temperatures. At higher saturation temperatures the heat transfer decreases for increasing oil mass fractions for both tubes. For oil mass fractions greater than 1% at the higher saturation temperatures a range of decreasing heat transfer coefficient is found for increasing heat flux. The effect is caused by the different miscibility of the oil and the components of the refrigerant mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号