共查询到10条相似文献,搜索用时 0 毫秒
1.
Context: Knowledge of the effects of high-shear granulation process parameters and scale-up on the properties of the produced granules is essential for formulators who face challenges regarding poor flow and compaction during development of modified release tablets based on high-molecular weight hypromellose (hydroxypropylmethylcellulose (HPMC)) polymers. Almost none of the existing studies deal with realistic industrial formulation. Objective: The aim was to investigate the effects of scale-up and critical process parameters (CPPs) of high-shear granulation on the quality attributes of the granules, particularly in terms of the flow and compaction, using a realistic industrial formulation based on HPMC K100M polymer. Methods: The flow properties were determined using flow time, Carr index, tablet mass, and crushing strength variations. The compaction properties were quantified using the ‘out-of-die’ Heckel and modified Walker models, as well as the tensile strength profile and elastic recovery. High-shear granulation was performed at different scales: 4?L, 300?L, and 600?L. Results and conclusion: The scale itself had larger effects on the granule properties than the CPPs, which demonstrated high robustness of formulation on the individual scale level. Nevertheless, to achieve the desired flow and compaction, the values of the CPPs need to be precisely selected to fine-tune the process conditions. The best flow was achieved at high volumes of water addition, where larger and more spherical granules were obtained. The CPPs showed negligible influence on the compaction with no practical implications, however, the volume of water addition volume was identified as having the largest effects on compaction. 相似文献
2.
Objective: The purpose of this study was to investigate and quantify flow properties, compressibility, and compactibility of various pharmaceutical lactose powders found on the market today (DCL-11, DCL-21, M‐200, Flowlac-100, and Tablettose 70, 80, and 100). Methods: Flow properties were estimated by measuring flow time, angle of repose, and the Hausner ratio. Particle rearrangement was studied using Kawakita's linear model. Compressibility was studied using two ‘out-of-die’ methods: (i) the Heckel model and (ii) a modified Walker model. Compactibility was quantified using two methods: (i) the tensile strength profile ( Cp) and (ii) the compactibility factor ( Pr). Statistical approach was used to analyze the results. Results: Flow properties of all materials were passable or better, except for M-200, which has very poor flowability. Compressibility results demonstrated that the most compressible lactose is spray-dried grade of lactose (Flowlac-100) and the least compressible is milled lactose (M-200). Compactibility studies showed that β‐lactose (DCL-21) forms tablets with superior tensile strength in comparison with α-lactose. Conclusion: Results of the compressibility study showed that the discriminative power of modified Walker model is greater in comparison with Heckel model. Compactibility methods yield similar and comparable results. 相似文献
3.
Intensive dry powder coating (mechanofusion) with tablet lubricants has previously been shown to give substantial powder flow improvement. This study explores whether the mechanofusion of magnesium stearate (MgSt), on a fine drug powder can substantially improve flow, without preventing the powder from being directly compacted into tablets. A fine ibuprofen powder, which is both cohesive and possesses a low-melting point, was dry coated via mechanofusion with between 0.1% and 5% (w/w) MgSt. Traditional low-shear blending was also employed as a comparison. No significant difference in particle size or shape was measured following mechanofusion. For the low-shear blended powders, only marginal improvement in flowability was obtained. However, after mechanofusion, substantial improvements in the flow properties were demonstrated. Both XPS and ToF-SIMS demonstrated high degrees of a nano-scale coating coverage of MgSt on the particle surfaces from optimized mechanofusion. The study showed that robust tablets were produced from the selected mechanofused powders, at high-dose concentration and tablet tensile strength was further optimized via addition of a Polyvinylpyrrolidone (PVP) binder (10% w/w). The tablets with the mechanofused powder (with or without PVP) also exhibited significantly lower ejection stress than those made of the raw powder, demonstrating good lubrication. Surprisingly, the release rate of drug from the tablets made with the mechanofused powder was not retarded. This is the first study to demonstrate such a single-step dry coating of model drug with MgSt, with promising flow improvement, flow-aid and lubrication effects, tabletability and also non-inhibited dissolution rate. 相似文献
4.
This article deals with the study of the energetic relationships during compaction and the properties of tablets produced from a co-processed excipient based on starch and called StarCap1500 ®. This article compares it with the substance Starch1500 ®. The study also includes the mixtures of StarCap 1500 ® and the granulated directly compressible lactose Pharmatose DCL ®15. The tablet properties tested included tensile strength and disintegration time, examined in dependence on compression force, and also a 0.4% addition of magnesium stearate. The results show a better compressibility of StarCap 1500 in comparison with Starch 1500 and a lower elastic component of energy. The tablets were stronger and disintegrated more rapidly, but the substance possessed a higher sensitivity to an addition of a lubricant than Starch 1500. Increasing portions of StarCap 1500 in the mixtures with Pharmatose DCL 15 increased the tensile strength of tablets, disintegration period as well as the sensitivity to an addition of a lubricant. From the energetic viewpoint, energy for friction was decreasing, while the energy accumulated by the tablet during compaction and the elastic component of energy were increased. 相似文献
5.
Objective: The effects of type and concentration of binding agent on properties of Eudragit RS based pellets were studied. Materials and methods: Pellets containing ibuprofen (60%), Eudragit RS (30%), Avicel (10%) were prepared by extrusion spheronization. PVP K30, PVP K90, HPMC 6cp, HPMC K100LV or HPMC K4M were used as binders in concentrations of 2, 4 or 6% based on the total weight of formulation. The process efficiency, pellet shape, size distribution, crushing strength, elastic modulus and drug release were examined. The effect of curing on pellet properties was also investigated. Results: The process of extrusion spheronization became difficult with increase in binder viscosity and/or concentration. An increase in binder viscosity and/or concentration resulted in reduction in the yield of pellets, wider particle size distribution and departure from spherical shape especially in the case of HPMC binder. The crushing strength and elastic modulus of pellets decreased with increase in PVPs concentration. However this was not the case for pellets containing HPMCs. Drug release rate increased as the concentration of binder increased. Pellets containing 2%w/w of PVP K30 showed the slowest release rate. For those pellets with brittle nature, curing changed the behavior of pellet under mechanical test to plastic deformation. Yield point and elastic modulus of all formulations decreased after curing. Curing decreased the drug release rate. Conclusion: Binder type and concentration significantly affected the properties of pellets. For production of sustained release ibuprofen Eudragit RS based pellets lower viscosity binders (PVP K30) with concentrations less than 4%w/w was optimum. 相似文献
6.
Objective: While previous research has demonstrated roller compaction operating parameters strongly influence the properties of the final product, a greater emphasis might be placed on the raw material attributes of the formulation. There were two main objectives to this study. First, to assess the effects of different process variables on the properties of the obtained ribbons and downstream granules produced from the rolled compacted ribbons. Second, was to establish if models obtained with formulations of one active pharmaceutical ingredient (API) could predict the properties of similar formulations in terms of the excipients used, but with a different API. Materials and methods: Tolmetin and acetaminophen, chosen for their different compaction properties, were roller compacted on Fitzpatrick roller compactor using the same formulation. Models created using tolmetin and tested using acetaminophen. The physical properties of the blends, ribbon, granule and tablet were characterized. Multivariate analysis using partial least squares was used to analyze all data. Results: Multivariate models showed that the operating parameters and raw material attributes were essential in the prediction of ribbon porosity and post-milled particle size. The post compacted ribbon and granule attributes also significantly contributed to the prediction of the tablet tensile strength. Conclusions: Models derived using tolmetin could reasonably predict the ribbon porosity of a second API. After further processing, the post-milled ribbon and granules properties, rather than the physical attributes of the formulation were needed to predict downstream tablet properties. An understanding of the percolation threshold of the formulation significantly improved the predictive ability of the models. 相似文献
7.
采用环保型水切割胶粉及力化学改性胶粉(MRP)与天然橡胶(NR)复合制备胶粉-NR复合胶,并探讨了胶粉用量对复合胶力学性能和动态性能的影响。通过红外和热失重分析确定了胶粉的主要成分为NR和丁苯橡胶(SBR),且改性后胶粉大分子链结构未发生明显变化。通过橡胶加工分析仪研究了胶粉用量及改性对复合胶加工性能的影响。采用炭黑分散仪研究并观察了胶粉在NR中的分散情况。结果表明,胶粉改性后与NR的相容性提高,二者界面结合力增大,MRP-NR复合胶加工性能改善。炭黑分散结果表明,胶粉用量越多,其分散性越差,改性后胶粉的分散性提高,MRP-NR复合胶的力学性能最优,拉伸强度为27.9 MPa。 相似文献
8.
The grain morphology, nano-oxide particles and mechanical properties of oxide dispersion strengthened (ODS)-316L austenitic steel synthesized by electron beam selective melting (EBSM) technique with different post-working processes, were explored in this study. The ODS-316L austenitic steel with superfine nano-sized oxide particles of 30–40 nm exhibits good tensile strength (412 MPa) and large total elongation (about 51%) due to the pinning effect of uniform distributed oxide particles on dislocations. After hot rolling, the specimen exhibits a higher tensile strength of 482 MPa, but the elongation decreases to 31.8% owing to the introduction of high-density dislocations. The subsequent heat treatment eliminates the grain defects induced by hot rolling and increases the randomly orientated grains, which further improves the strength and ductility of EBSM ODS-316L steel. 相似文献
9.
Direct compaction (DC) is the preferred choice for tablet manufacturing; however, its application in natural plant product (NPP) tablets is still extremely immature. In this study, NPP powders prepared by three commonly used methods were evaluated on their suitability for DC. Extensive characterizations of their physical properties were performed. Multivariate statistical analysis was utilized to explore the influence of preparation technology on the properties of NPP powders and identify the dominating factors that influence their DC properties. The results demonstrated that (i) the 27 kinds of model NPP powders selected randomly in this study could to some degree represent most NPP powders used in actual production; (ii) ~81.5% of the NPP powders exhibited both poor compactibility and flowability, and none of the NPP powders could be compacted into tablets via DC; (iii) the physical properties of NPP powders prepared by direct pulverization were significantly different from those of extracted ones, while there were no significant differences between the water and ethylalcohol extracted ones; and (iv) the DC properties of NPP powders could be improved through controlling some physical properties (e.g., density, particle size, morphology, and texture parameters) reasonably. Overall, this study comprehensively evaluated the current status and application of NPP powders in DC, and is significant in facilitating the development and modernization of NPPs through DC. 相似文献
10.
Context: Continuous processing is becoming popular in the pharmaceutical industry for its cost and quality advantages. Objective: This study evaluated the mechanical properties, uniformity of dosage units and drug release from the tablets prepared by continuous direct compression process. Materials and methods: The tablet formulations consisted of acetaminophen (3–30% (w/w)) pre-blended with 0.25% (w/w) colloidal silicon dioxide, microcrystalline cellulose (69–96% (w/w)) and magnesium stearate (1% (w/w)). The continuous tableting line consisted of three loss-in-weight feeders and a convective continuous mixer and a rotary tablet press. The process continued for 8?min and steady state was reached within 5?min. The effects of acetaminophen content, impeller rotation rate (39–254?rpm) and total feed rate (15 and 20?kg/h) on tablet properties were examined. Results and discussion: All the tablets complied with the friability requirements of European Pharmacopoeia and rapidly released acetaminophen. However, the relative standard deviation of acetaminophen content (10% (w/w)) increased with an increase in impeller rotation rate at a constant total feed rate (20?kg/h). A compression force of 12?kN tended to result in greater tablet hardness and subsequently a slower initial acetaminophen release from tablets when compared with those made with the compression force of about 8?kN. Conclusions: In conclusion, tablets could be successfully prepared by a continuous direct compression process and process conditions affected to some extent tablet properties. 相似文献
|