首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ethanol has been considered as an alternative fuel for diesel engines. On the other hand, injection timing is a major parameter that sensitively affects the engine performance and emissions. Therefore, in this study, the influence of advanced injection timing on the engine performance and exhaust emissions of a single cylinder, naturally aspirated, four stroke, direct injection diesel engine has been experimentally investigated when using ethanol‐blended diesel fuel from 0 to 15% with an increment of 5%. The original injection timing of the engine is 27° crank angle (CA) before top dead center (BTDC). The tests were conducted at three different injection timings (27, 30 and 33° CA BTDC) for 30 Nm constant load at 1800 rpm. The experimental results showed that brake‐specific energy consumption (BSEC), brake‐specific fuel consumption (BSFC), NOx and CO2 emissions increased as brake‐thermal efficiency (BTE), smoke, CO and HC emissions decreased with increasing amount of ethanol in the fuel mixture. Comparing the results with those of original injection timing, NOx emissions increased and smoke, HC and CO emissions decreased for all test fuels at the advanced injection timings. For BSEC, BSFC and BTE, advanced injection timings gave negative results for all test conditions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Environmental concerns and limited resource of petroleum fuels have caused interests in the development of alternative fuels for internal combustion (IC) engines. For diesel engines, alcohols are receiving increasing attention because they are oxygenated and renewable fuels. Therefore, in this study, the effect of injection timing on the exhaust emissions of a single cylinder, naturally aspirated, four-stroke, direct injection diesel engine has been experimentally investigated by using methanol-blended diesel fuel from 0% to 15% with an increment of 5%. The tests were conducted for three different injection timings (15°, 20° and 25 °CA BTDC) at four different engine loads (5 Nm, 10 Nm, 15 Nm, 20 Nm) at 2200 rpm. The experimental test results showed that Bsfc, NOx and CO2 emissions increased as BTE, smoke opacity, CO and UHC emissions decreased with increasing amount of methanol in the fuel mixture. When compared the results to those of original injection timing, NOx and CO2 emissions decreased, smoke opacity, UHC and CO emissions increased for the retarded injection timing (15 °CA BTDC). On the other hand, with the advanced injection timing (25 °CA BTDC), decreasing smoke opacity, UHC and CO emissions diminished, and NOx and CO2 emissions boosted at all test conditions. In terms of Bsfc and BTE, retarded and advanced injection timings gave negative results for all fuel blends in all engine loads.  相似文献   

3.
Higher NOx is one of the major problems to be overcomed in a low heat rejection (LHR) diesel engine as insulation leads to an increase in combustion temperature about 200–250 °C compared to an identical standard (STD) diesel engine. High combustion temperatures alter optimum injection timing of a LHR engine. With the proper adjustment of the injection timing, it is possible to partially offset the adverse effect of insulation on heat release rate and hence to obtain improved performance and lower NOx. However, the injection timing and brake specific fuel consumption (BSFC) trade-off must be considered together in performance and NOx emission point of view. In this study, optimum injection timing was found with 4 crank angle (34° CA) retarded before top dead centre (BTDC) in LHR diesel engine in comparison to that of STD diesel engine (38° CA BTDC). When the LHR engine was operated with the injection timing of the 38 crank angle, which is the optimum value of the STD engine, it was shown that NOx emission increased about 15%. However, when the injection timing was retarded to 34° CA in the LHR case, it was observed a decrease on the NOx emissions with about 40% and the brake specific fuel consumption (BSFC) with about 6% compared to that of the STD case. Thus, by retarding the injection timing, an additional 1.5% saving in fuel consumption was obtained.  相似文献   

4.
The experiments to determine the effect of fuel-injection timings on engine characteristics and emissions of a DI engine fueled with NG-hydrogen blends (0%, 3%, 5% and 8%) at various engine speeds were conducted. Three injection timings namely 120°, 180° and 300° CA BTDC with a wide open throttle at relative air-fuel ratio, λ = 1.0 were selected. The ignition advance angle was fixed at 30° CA BTDC, while the injection pressure was fixed at 1.4 MPa for all the cases. The tests were firstly performed at low engine speed of 2000 rpm to determine the engine characteristics and emissions. The results showed that the engine performance (e.g. Brake Torque, Brake Power and BMEP), the cylinder pressure and the heat release have the highest values at the injection timing of 180° CA BTDC, followed by the 300° CA BTDC and the 120° CA BTDC. The NOx emission was found to be highest at the injection timing of 180° CA BTDC. The THC and CO emissions were found to decrease while the CO2 emission increased with the advancement in the injection timing. The addition of a small amount of hydrogen to the natural gas was found to increase the engine performance, enhance combustion and reduce emissions for any selected injection timings. Secondly, the tests were carried out at variable engine speeds (i.e. 2000 rpm-4000 rpm) in order to further investigate the engine performance. The injection timings of 180° and 300° CA BTDC with CNG-H2 blends were only selected for comparisons. The injection timing of the 300° CA BTDC was discovered to yield better engine performance as compared to the 180° CA BTDC injection timing after a cutoff engine speed of approximately 2500 rpm.  相似文献   

5.
A numerical study on effects of hydrogen direct injection on hydrogen mixture distribution, combustion and emissions was presented for a gasoline/hydrogen SI engine. Under lean burn conditions, five different direct hydrogen injection timings were applied at low speeds and low loads on SI engines with direct hydrogen injection (HDI) and gasoline port injection. The results were showed as following: firstly, with the increase of hydrogen direct injection timing, the hydrogen concentration near the sparking plug first increases and then decreases, reaching the highest when hydrogen direct injection timing is 120°CA BTDC: Secondly, hydrogen can speed up the combustion rate. The main factor affecting the combustion rate and efficiency is the hydrogen concentration near the sparking plug: Thirdly, in comparing with gasoline, the NOX emissions with hydrogen addition increase by an average of 115%. For different hydrogen direct injection timings, the NOX emissions of 120°CA BTDC is the highest, which is 29.9% higher than the 75°CA BTDC. The hydrogen addition make the NOX emissions increase in two ways. On the one hand, the average temperature with hydrogen addition is higher. On the other hand, the temperature with hydrogen addition is not homogeneous, which makes the peak of temperature much higher. In a word, the main factor of NOX emissions is the size of high temperature zone in the cylinder: Finally, because the combustion is more complete, in comparing with gasoline, hydrogen addition can reduce the CO and HC emissions by 32.2% and 80.4% respectively. Since a more homogeneous hydrogen mixture distribution can influence a lager zone in the cylinder and reduce the wall quenching distance, these emissions decrease with the increase of hydrogen direct injection timing. The CO and HC emissions of 135°CA BTDC decrease by 41.5% and 71.4%, respectively, compared to 75°CA BTDC.  相似文献   

6.
Recently, the increasing demand for energy requires the use of alternative fuels, especially in fossil fueled power systems. As a promising alternative fuel for next-generation diesel engines that utilize fossil fuel, hydrogen fuel is one step ahead due to its positive properties. In this study, the effects of hydrogen on the performance of a diesel engine have been numerically investigated with respect to different injection ratios and timings. The numerical results of the study for 25% load conditions on a single-cylinder, four-stroke diesel engine have been validated against experimental data taken from literature and good agreement has been observed for pressure results. Emission parameters such as NOx, CO and performance parameters such as cylinder temperature, pressure, power, thermal efficiency and IMEP are presented comparatively.The results of numerical analyses show that the maximum pressure, temperature and heat release rate are observed with injection ratio of H15 and early injection timing (20° CA BTDC). Besides that, engine power, thermal efficiency and IMEP are greatly improved with increasing injection ratio and early injection timing. Although combustion chamber performance parameters improve with rising the hydrogen injection ratio, higher NOx emissions have also been detected as a negative side effect. Furthermore, while early injection timing increases diesel engine performance, it also causes an increase in NOx emissions. Therefore, precise determination of injection timing together with the optimum amount of hydrogen has revealed that it brings crucial improvement in engine performance and emissions.  相似文献   

7.
O.M.I. Nwafor 《Renewable Energy》2007,32(14):2361-2368
There has been a growing concern on the emission of greenhouse gases into the atmosphere, whose consequence is global warming. The sources of greenhouse gases have been identified, of which the major contributor is the combustion of fossil fuel. Researchers have intensified efforts towards identifying greener alternative fuel substitutes for the present fossil fuel. Natural gas is now being investigated as potential alternative fuel for diesel engines. Natural gas appears more attractive due to its high octane number and perhaps, due to its environmental friendly nature. The test results showed that alternative fuels exhibit longer ignition delay, with slow burning rates. Longer delays will lead to unacceptable rates of pressure rise with the result of diesel knock. This work examines the effect of advanced injection timing on the emission characteristics of dual-fuel engine. The engine has standard injection timing of 30° BTDC. The injection was first advanced by 5.5° and given injection timing of 35.5° BTDC. The engine performance was erratic on this timing. The injection was then advanced by 3.5°. The engine performance was smooth on this timing especially at low loading conditions. The ignition delay was reduced through advanced injection timing but tended to incur a slight increase in fuel consumption. The CO and CO2 emissions were reduced through advanced injection timing.  相似文献   

8.
Due to the increasing demand for fossil fuels and environmental threat due to pollution a number renewable sources of energy have been studied worldwide. In the present investigation influence of injection timing on the performance and emissions of a single cylinder, four stroke stationary, variable compression ratio, diesel engine was studied using waste cooking oil (WCO) as the biodiesel blended with diesel. The tests were performed at three different injection timings (24°, 27°, 30° CA BTDC) by changing the thickness of the advance shim. The experimental results showed that brake thermal efficiency for the advanced as well as the retarded injection timing was lesser than that for the normal injection timing (27° BTDC) for all sets of compression ratios. Smoke, un-burnt hydrocarbon (UBHC) emissions were reduced for advanced injection timings where as NOx emissions increased. Artificial Neural Networks (ANN) was used to predict the engine performance and emission characteristics of the engine. Separate models were developed for performance parameters as well as emission characteristics. To train the network, compression ratio, injection timing, blend percentage, percentage load, were used as the input parameters where as engine performance parameters like brake thermal efficiency (BTE), brake specific energy consumption (BSEC), exhaust gas temperature (Texh) were used as the output parameters for the performance model and engine exhaust emissions such as NOx, smoke and (UBHC) values were used as the output parameters for the emission model. ANN results showed that there is a good correlation between the ANN predicted values and the experimental values for various engine performance parameters and exhaust emission characteristics and the relative mean error values (MRE) were within 8%, which is acceptable.  相似文献   

9.
Automobiles are one of the major sources of air pollution in the environment. In addition CO2 emission, a product of complete combustion also has become a serious issue due to global warming effect. Hence the search for cleaner alternative fuels has become mandatory. Hydrogen is expected to be one of the most important fuels in the near future for solving the problems of air pollution and greenhouse gas problems (carbon dioxide), thereby protecting the environment. Hence in the present work, an experimental investigation has been carried out using hydrogen in the dual fuel mode in a Diesel engine system. In the study, a Diesel engine was converted into a dual fuel engine and hydrogen fuel was injected into the intake port while Diesel was injected directly inside the combustion chamber during the compression stroke. Diesel injected inside the combustion chamber will undergo combustion first which in-turn would ignite the hydrogen that will also assist the Diesel combustion. Using electronic control unit (ECU), the injection timings and injection durations were varied for hydrogen injection while for Diesel the injection timing was 23° crank angle (CA) before injection top dead centre (BITDC). Based on the performance, combustion and emission characteristics, the optimized injection timing was found to be 5° CA before gas exchange top dead centre (BGTDC) with injection duration of 30° CA for hydrogen Diesel dual fuel operation. The optimum hydrogen flow rate was found to be 7.5 lpm. Results indicate that the brake thermal efficiency in hydrogen Diesel dual fuel operation increases by 15% compared to Diesel fuel at 75% load. The NOX emissions were higher by 1–2% in dual fuel operation at full load compared to Diesel. Smoke emissions are lower in the entire load spectra due to the absence of carbon in hydrogen fuel. The carbon monoxide (CO), carbon dioxide (CO2) emissions were lesser in hydrogen Diesel dual fuel operation compared to Diesel. The use of hydrogen in the dual fuel mode in a Diesel engine improves the performance and reduces the exhaust emissions from the engine except for HC and NOX emissions.  相似文献   

10.
This study is aimed at investigating the effect of injection system parameters such as injection pressure, injection timing and nozzle tip protrusion on the performance and emission characteristics of a twin cylinder water cooled naturally aspirated CIDI engine. Biodiesel, derived from pongamia seeds through transesterification process, blended with diesel was used as fuel in this work. The experiments were designed using a statistical tool known as Design of Experiments (DoE) based on response surface methodology (RSM). The resultant models of the response surface methodology were helpful to predict the response parameters such as Brake Specific Energy Consumption (BSEC), Brake Thermal Efficiency (BTE), Carbon monoxide (CO), Hydrocarbon (HC), smoke opacity and Nitrogen Oxides (NOx) and further to identify the significant interactions between the input factors on the responses. The results depicted that the BSEC, CO, HC and smoke opacity were lesser, and BTE and NOx were higher at 2.5 mm nozzle tip protrusion, 225 bar of injection pressure and at 30° BTDC of injection timing. Optimization of injection system parameters was performed using the desirability approach of the response surface methodology for better performance and lower NOx emission. An injection pressure of 225 bar, injection timing of 21° BTDC and 2.5 mm nozzle tip protrusion were found to be optimal values for the pongamia biodiesel blended diesel fuel operation in the test engine of 7.5 kW at 1500 rpm.  相似文献   

11.
Transport vehicles greatly pollute the environment through emissions such as CO, CO2, NOx, SOx, unburnt or partially burnt HC and particulate emissions. Fossil fuels are the chief contributors to urban air pollution and major source of green house gases (GHGs) and considered to be the prime cause behind the global climate change. Biofuels are renewable, can supplement fossil fuels, reduce GHGs and mitigate their adverse effects on the climate resulting from global warming. This paper presents the results of performance and emission analyses carried out in an unmodified diesel engine fueled with Pongamia pinnata methyl ester (PPME) and its blends with diesel. Engine tests have been conducted to get the comparative measures of brake specific fuel consumption (BSFC), brake specific energy consumption (BSEC) and emissions such as CO, CO2, HC, NOx to evaluate the behaviour of PPME and diesel in varying proportions. The results reveal that blends of PPME with diesel up to 40% by volume (B40) provide better engine performance (BSFC and BSEC) and improved emission characteristics.  相似文献   

12.
The high flammability of hydrogen gas gives it a steady flow without throttling in engines while operating. Such engines also include different induction/injection methods. Hydrogen fuels are encouraging fuel for applications of diesel engines in dual fuel mode operation. Engines operating with dual fuel can replace pilot injection of liquid fuel with gaseous fuels, significantly being eco-friendly. Lower particulate matter (PM) and nitrogen oxides (NOx) emissions are the significant advantages of operating with dual fuel.Consequently, fuels used in the present work are renewable and can generate power for different applications. Hydrogen being gaseous fuel acts as an alternative and shows fascinating use along with diesel to operate the engines with lower emissions. Such engines can also be operated either by injection or induction on compression of gaseous fuels for combustion by initiating with the pilot amount of biodiesel. Present work highlights the experimental investigation conducted on dual fuel mode operation of diesel engine using Neem Oil Methyl Ester (NeOME) and producer gas with enriched hydrogen gas combination. Experiments were performed at four different manifold hydrogen gas injection timings of TDC, 5°aTDC, 10°aTDC and 15°aTDC and three injection durations of 30°CA, 60°CA, and 90°CA. Compared to baseline operation, improvement in engine performance was evaluated in combustion and its emission characteristics. Current experimental investigations revealed that the 10°aTDC hydrogen manifold injection with 60°CA injection duration showed better performance. The BTE of diesel + PG and NeOME + PG operation was found to be 28% and 23%, respectively, and the emissions level were reduced to 25.4%, 14.6%, 54.6%, and 26.8% for CO, HC, smoke, and NOx, respectively.  相似文献   

13.
A full-cycle computational fluid dynamics (CFD) simulation coupled with detailed chemical kinetics mechanism has been used to investigate the effect of start of injection (SOI) timing and intake valve close (IVC) timing on performance and emissions of diesel premixed charge compression ignition (PCCI) engine. By sweeping SOI timing from −35 to −5 °CA ATDC and IVC timing from −140 to −80 °CA ATDC with fixed 50% exhaust gas recirculation (EGR) and 1.8 bar intake pressure, the contour plots for ignition timing, nitric oxides (NOx), soot, hydrocarbon (HC), carbon monoxide (CO), indicated specific fuel consumption (ISFC), and ringing intensity have been developed. The results indicate that the operating range can be divided into kinetically controlled region and mixing-controlled region, in which the ignition timing is solely controlled by IVC timing and SOI timing respectively. To Minimize HC, CO, NOx and soot emissions, SOI timing must be carefully adjusted within a limited range. With the retarded IVC timing, the operating range of SOI becomes wider for clean combustion. The IVC timing should be optimized with consideration of ignition timing and combustion efficiency at different SOI timing in order to improve fuel economy. For purpose of avoiding engine knock, the SOI timing around −20 °CA ATDC and early IVC timing are pursued.  相似文献   

14.
This paper presents the results of experimental work carried out to evaluate the combustion performance and exhaust emission characteristics of turpentine oil fuel (TPOF) blended with conventional diesel fuel (DF) fueled in a diesel engine. Turpentine oil derived from pyrolysis mechanism or resin obtained from pine tree dissolved in a volatile liquid can be used as a bio-fuel due to its properties. The test engine was fully instrumented to provide all the required measurements for determination of the needed combustion, performance and exhaust emission variables. The physical and chemical properties of the test fuels were earlier determined in accordance to the ASTM standards.ResultsIndicated that the engine operating on turpentine oil fuel at manufacture's injection pressure – time setting (20.5 MPa and 23° BTDC) had lower carbon monoxide (CO), unburned hydrocarbons (HC), oxides of nitrogen (NOx), smoke level and particulate matter. Further the results showed that the addition of 30% TPOF with DF produced higher brake power and net heat release rate with a net reduction in exhaust emissions such as CO, HC, NOx, smoke and particulate matter. Above 30% TPOF blends, such as 40% and 50% TPOF blends, developed lower brake power and net heat release rate were noted due to the fuels lower calorific value; nevertheless, reduced emissions were still noted.  相似文献   

15.
Up to 90% hydrogen energy fraction was achieved in a hydrogen diesel dual-fuel direct injection (H2DDI) light-duty single-cylinder compression ignition engine. An automotive-size inline single-cylinder diesel engine was modified to install an additional hydrogen direct injector. The engine was operated at a constant speed of 2000 revolutions per minute and fixed combustion phasing of ?10 crank angle degrees before top dead centre (°CA bTDC) while evaluating the power output, efficiency, combustion and engine-out emissions. A parametric study was conducted at an intermediate load with 20–90% hydrogen energy fraction and 180-0 °CA bTDC injection timing. High indicated mean effective pressure (IMEP) of up to 943 kPa and 57.2% indicated efficiency was achieved at 90% hydrogen energy fraction, at the expense of NOx emissions. The hydrogen injection timing directly controls the mixture condition and combustion mode. Early hydrogen injection timings exhibited premixed combustion behaviour while late injection timings produced mixing-controlled combustion, with an intermediate point reached at 40 °CA bTDC hydrogen injection timing. At 90% hydrogen energy fraction, the earlier injection timing leads to higher IMEP/efficiency but the NOx increase is inevitable due to enhanced premixed combustion. To keep the NOx increase minimal and achieve the same combustion phasing of a diesel baseline, the 40 °CA bTDC hydrogen injection timing shows the best performance at which 85.9% CO2 reduction and 13.3% IMEP/efficiency increase are achieved.  相似文献   

16.
This paper investigated the impact of injection angle and advance injection timing on combustion, emission, and performance characteristics in a dimethyl ether (DME) fueled compression ignition engine through experimentation on spray behaviors and the use of numerical methods. To achieve this aim, a visualization system and two injectors with different injection angles were used to analyze spray characteristics. The combustion, emission, and performance characteristics were analyzed by numerical methods using a detailed chemical kinetic DME oxidation model. Each of five injection angles and timings were selected to examine the effect of injection angle and timing. It was revealed that the injected spray with narrow injection angles was impinged on the bottom wall after the SOI of BTDC 60°, and most of the fuel spray and evaporation with the wide injection angles had a distribution at the crevice region when the injection timing was advanced. In addition, NOx emissions at the SOI of BTDC 20° and TDC had higher values, and the soot emission quantities were extremely small. The narrow injection angles had good performance at the advanced injection timing, and the injection timing over a range of BTDC 40-20° showed superiority in performance characteristics.  相似文献   

17.
M. Mani  G. Nagarajan 《Energy》2009,34(10):1617
Environmental concern and availability of petroleum fuels have caused interests in the search for alternate fuels for internal combustion engines. Waste plastics are indispensable materials in the modern world and application in the industrial field is continually increasing. In this context, waste plastics are currently receiving renewed interest. As an alternative, non-biodegradable, and renewable fuel, waste plastic oil is receiving increasing attention. The waste plastic oil was compared with the petroleum products and found that it can also be used as fuel in compression ignition engines. In the present work, the influence of injection timing on the performance, emission and combustion characteristics of a single cylinder, four stroke, direct injection diesel engine has been experimentally investigated using waste plastic oil as a fuel. Tests were performed at four injection timings (23°,20°,17° and 14° bTDC). When compared to the standard injection timing of 23° BTDC the retarded injection timing of 14° bTDC resulted in decreased oxides of nitrogen, carbon monoxide and unburned hydrocarbon while the brake thermal efficiency, carbon dioxide and smoke increased under all the test conditions.  相似文献   

18.
Dual-injection strategies in spark-ignition engines allow the in-cylinder blending of two different fuels at any blend ratio, when simultaneously combining port fuel injection (PFI) and direct-injection (DI). Either fuel can be used as the main fuel, depending on the engine demand and the fuel availability. This paper presents the preliminary investigation of such a flexible, bi-fuel concept using a single cylinder spark-ignition research engine. Gasoline has been used as the PFI fuel, while various mass fractions of gasoline, ethanol and 2,5-dimethylfuran (DMF) have been used in DI. The control of the excess air ratio during the in-cylinder mixing of two different fuels was realized using the cross-over theory of the carbon monoxide and oxygen emissions concentrations. The dual-injection results showed how the volumetric air flow rate, total input energy and indicated mean effective pressure (IMEP) increases with deceasing PFI mass fraction, regardless of the DI fuel. The indicated efficiency increases when using any ethanol fraction in DI and results in higher combustion and fuel conversion efficiencies compared to gasoline. Increasing the DMF mass fraction in DI reduces the combustion duration more significantly than with increased fractions of ethanol or gasoline in DI. The hydrocarbon (HC), oxides of nitrogen (NOx) and carbon dioxide (CO2) emissions mostly reduce when using any gasoline or ethanol fraction in DI. When using DMF, the HC emissions reduce, but the NOx and CO2 emissions increase.  相似文献   

19.
Butanol could reduce emissions and alleviate the energy crisis as a bio-fuel used on engines, but the production cost problem limits the application of butanol. During the butanol production, ABE (Acetone-Butanol-Ethanol) is a critical intermediate product. Many studies researched the direct application of ABE on engines instead of butanol to solve the production cost problem of butanol. ABE has the defects of large ignition energy and vaporization heat. Hydrogen is a gaseous fuel with small ignition energy and high flame temperature. In this research, ABE port injection combines with hydrogen direct injection, forming a stratified state of the hydrogen-rich mixture around the spark plug. The engine speed is 1500 rpm, and λ is 1. Five αH2 (hydrogen blending fractions: 0, 5%, 10%, 15%, 20%) and five spark timings (5°, 10°, 15°, 20°, 25° CA BTDC) are studied to observe the effects of them on combustion and emissions of the test engine. The results show that hydrogen addition increases the maximum cylinder pressure and maximum heat release rate, increases the maximum cylinder temperature and IMEP, but the exhaust temperature decreases. The flame development period and flame propagation period shorten after adding hydrogen. Hydrogen addition improves HC and CO emissions but increases NOx emissions. Particle emissions decrease distinctly after hydrogen addition. Hydrogen changes the combustion properties of ABE and improves the test engine's power and emissions. The combustion in the cylinder becomes better with the increase of αH2, but a further increase in αH2 beyond 5% brings minor improvements on combustion.  相似文献   

20.
This study reports the results of an experimental investigation of the performance of an IC engine fueled with a Karanja biodiesel blends, followed by multi-objective optimization with respect to engine emissions and fuel economy, in order to determine the optimum biodiesel blend and injection timings complying with Bharat Stage II emission norms. Nonlinear regression has been used to regress the experimentally obtained data to predict the brake thermal efficiency, NOx, HC and smoke emissions based on injection timing, blend ratio and power output. To acquire the data, experimental studies have been conducted on a single cylinder, constant speed (1500 rpm), direct injection diesel engine under variable load conditions and injection timings for neat diesel and various Karanja biodiesel blends (5%, 10%, 15%, 20%, 50% and 100%). Retarding the injection timing for neat Karanja biodiesel resulted in an improved efficiency and lower HC emissions. A tradeoff relationship between the NOx and smoke emissions is observed, which makes it difficult to determine the optimum blend ratio. The functional relationship developed between the correlating variables using nonlinear regression is able to predict the performance and emission characteristics with a correlation coefficient (R) in the range of 0.95-0.99 and very low root mean square errors. The outputs obtained using these functions are used to evaluate the multi-objective function of optimization process in the 0-20% blend range. The overall optimum is found to be 13% biodiesel-diesel blend with an injection timing of 24°bTDC, when equal weightage is given to emissions and efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号