共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
设计了一种用于处理乙酸仲丁酯副产物回收工业级乙酸仲丁酯的新工艺,并应用 Aspen软件对该工艺中共沸精馏塔的理论塔板数、回流比、共沸剂的量、进料位置及进料温度和甲醇回收塔的理论塔板数、回流比及进料位置等工艺参数进行灵敏度优化与分析.最终优化后的模拟结果为:共沸精馏塔处理负荷按2.4t/h计时,其塔板数为 54 块,塔顶的回流比为 10,共沸剂进料量为 1.8 t/h,进料位置为第 30 块板,进料温度为40℃,塔釜乙酸仲丁酯纯度99.0%达到工业级;与乙酸仲丁酯共沸精馏塔配套负荷的甲醇回收塔,理论板数为24 块,塔顶的回流比为8,原料液进料为第 20 块板,甲醇纯度达到96%以上,甲醇含水量小于0.15%,达到工业一等品质量要求.经济效益分析的结果表明本工艺具有良好的经济效益. 相似文献
3.
4.
乙酸-水-乙酸正丁酯体系的分离是汽-液-液三相共沸精馏过程,相分裂的判断和精馏塔算法的改进是进行该精馏过程模拟的两个主要问题.本文根据现有的基础数据给出了该体系的逸度和活度因子计算模型,然后讨论了Gibbs自由能的变化规律和热力学稳定性条件,给出了该体系相分裂判据,并得到了完整的相分裂区;最后,根据多相精馏的特点对现有的精馏塔算法进行了改进,对该三元非均相共沸精馏过程进行了数值模拟,所得沿塔温度和各组分浓度分布曲线与工业实测数据吻合. 相似文献
5.
6.
采用ChemCAD模拟乙酸丁酯催化反应精馏过程 总被引:1,自引:0,他引:1
采用美国Chemstation公司开发的化工流程模拟软件ChemCAD,模拟催化反应精馏法制备乙酸丁酯过程。模拟过程中选用NRTL模型计算物系热力学性质,选用化学平衡反应器模型(EREA)模拟化学反应过程,选用同时校正法精馏塔模型(SCDS)模拟反应精馏过程。 相似文献
7.
8.
9.
10.
11.
为了给醋酸仲丁酯的工业生产提供动力学支持,研究了醋酸和丁烯在液相中直接酯化合成醋酸仲丁酯的本征动力学。在间歇搅拌釜式反应器中,以阳离子交换树脂为催化剂,采用MTBE后续工段中除去异丁烯后的C4混合组分和醋酸发生酯化加成反应生成醋酸仲丁酯。在消除内外扩散的影响下考察了催化剂用量、反应温度对反应速率的影响。得到其酯化反应正反应速率常数及活化能分别为65.23 L/(mol.min)和325.17 J/mol;其酯化反应负反应速率常数及活化能分别为0.239 L/(mol.min)和900.47 J/mol。得到了合成醋酸仲丁酯的反应动力学方程,为反应精馏的模拟优化提供了基础数据。 相似文献
12.
通过选择合适的热力学方法,采用Aspen Plus流程模拟软件对乙酸乙酯生产过程中脱水精馏系统进行了流程模拟和工艺参数优化,考察了进料位置、分相器加水量、再沸器热负荷等参数对乙酸乙酯产品质量的影响,产品质量达到GB/T3728—2007优等品标准,确定了最优的工艺条件,为工程设计和项目开车提供了理论指导。 相似文献
13.
14.
15.
阳离子交换树脂催化1-丁烯合成醋酸仲丁酯 总被引:1,自引:0,他引:1
以强酸性阳离子交换树脂为催化剂催化1-丁烯与醋酸合成醋酸仲丁酯。考察了原料烯酸配比、反应压力、反应时间、反应温度、催化剂用量等因素对醋酸转化率的影响,结果表明:在原料烯酸比为2.0:1,反应压力5.5MPa,反应时间11h,反应温度120℃,催化剂用量为醋酸质量的10%的条件下,醋酸转化率为92.4%~95%。气相色谱一质谱分析表明,醋酸仲丁酯的选择性为92%。该催化剂对1-丁烯与醋酸的酯化反应有良好的催化活性和选择性,且催化剂稳定性良好。 相似文献
16.
李澄非 《中国化学工程学报》2011,19(1):89-96
Dynamic model for dehydration process of industrial purified terephthalic acid solvent is investigated to understand and characterize the process.A temperature differential expression is presented,which ensures the equation to convergence and short computation time.The model is used to study the dynamic behavior of an azeotropic distillation column separating acetic acid and water using n-butyl acetate as the entrainer.Responses of the column to feed flow and aqueous reflux flow are simulated.The movement of temperature front is also simulated.The comparison between simulation and industrial values shows that the model and algorithm are effective.On the basis of simulation and analysis,control strategy,online optimization and so on can be implemented effectively in dehydration process of purified terephthalic acid solvent. 相似文献
17.
The simulated process model of the HAc dehydration process under actual overloaded condition was conducted by amending the model of standard condition in our previous work using the process data collected from actual production. Based on the actual process model, the operation optimization analysis of each plant(HAc dehydration column, decanter and NPA recycle column) was conducted using Residue Curve Maps(RCMs),sensitivity analysis and software optimization module. Based on the optimized parameters, the influence of feed impurity MA and the temperature of decanter on the separating effect and energy consumption of the whole process were analyzed. Then the whole process operation optimizing strategy was proposed with the objective that the total reboiler duty Q Total of C-1 and C-3 reaches the minimum value, keeping C-1 and C-3 at their optimized separation parameters obtained above, connecting all the broken recycle and connection streams, and using the temperature of D-1 as operation variable. The optimization result shows that the total reboiler duty Q Total of the whole process can reach the minimum value of 128.32 × 10~6 k J·h~(-1) when the temperature of decanter is 352.35 K, and it can save 5.94 × 10~6 k J·h~(-1), about 2.56 t·h~(-1) low-pressure saturated vapor. 相似文献
18.
19.
The decomposition of sec-butyl acetate on de-ashed 20-to 30-mesh coconut-shell charcoal (1500 m2/g) was studied in a fixed bed reactor in the temperature range 300–375°C, and at partial pressures of 1 atm. and 0.29 atm. The ester decomposed principally to n-butene and acetic acid, and only small amounts of other products were found. The ratio of 1-butene to 2-butene was about 1:1, very close to that observed for thermal decomposition of the ester but far removed from the equilibrium butene ratio. The butene selectivity was independent of conversion. The rate of reaction followed the rate equation r = kA PE/1 + APE This expression corresponds to surface reaction on one site being rate controlling. The activation energy of rate constant k was 32.7 kcal/mole, compared to 46.6 kcal/mole for the gas-phase reaction. The temperature dependence of adsorption constant A showed a heat adsorption of 12 kcal/mole. Gas chromatographic measurements confirmed this value and also showed that ester is the principal adsor-bate on the charcoal. 相似文献