首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
分别以聚己内酯二醇(PCL)、聚碳酸酯二醇(PCDL)、聚己二酸-1,4-丁二醇酯二醇(PBA)以及聚四氢呋喃二醇(PTMG)为软段,4,4'-二苯基甲烷二异氰酸酯(MDI)和1,4-丁二醇(BDO)为硬段,采用预聚体法合成4种基于不同软段的聚氨酯弹性体。通过机械性能测试、热失重分析、动态力学性能测试及不同温度下的力学性能分析,研究低聚物二醇种类对聚氨酯弹性体的力学性能和耐热性能的影响。结果表明,以聚酯多元醇作为软段制得的聚氨酯弹性体的耐热性要优于聚醚型;几种聚酯型聚氨酯弹性体中,PCL型聚氨酯弹性体的热稳定性以及不同温度下的力学性能保持率最高,耐热性最好;动态力学性能分析表明,在高弹态平台区PCL型聚氨酯的损耗因子较小,动态内生热较小,且储能模量下降较缓慢,动态力学性能最好。  相似文献   

2.
分别以聚己内酯二醇(PCL)、聚四亚甲基醚二醇(PTMG)为低聚物二醇原料,以对苯二异氰酸酯(PPDI)、二苯基甲烷二异氰酸酯(MDI)或2,4-甲苯二异氰酸酯(TDI)为异氰酸酯原料,以1,4-丁二醇(BDO)或3,3'-二氯-4,4'-二氨基二苯基甲烷(MOCA)为扩链剂,采用预聚体法合成了结构不同的聚氨酯(PU)弹性体,并对其进行了物理机械性能测试、热重分析(TG)和动态力学分析(DMA)。结果表明,PCL/PPDI/BDO聚氨酯弹性体的力学性能和耐热性能最好; PPDI/BDO/PCL聚氨酯弹性体的储能模量优于TDI/MOCA/PCL弹性体;当硬段结构为PPDI/BDO时,较低温度下,PCL体系的储能模量优于PTMG体系,较高温度下,PTMG体系优于PCL体系。  相似文献   

3.
采用预聚法制备混合软段聚氨酯弹性体,考察了以聚己二酸乙二醇酯二醇(PEA)、聚己内酯二醇(PCL)及不同比例的PEA/PCL混合物为软段得到的聚氨酯材料的力学性能及微相分离。结果表明,与以纯PEA为软段的聚氨酯弹性体相比,以混合软段制备的聚氨酯在保持PEA型聚氨酯力学性能的基础上,其微相分离好于PEA型聚氨酯,同时常温至80℃的储能模量提高。  相似文献   

4.
分别以聚己二酸乙二醇酯二醇(PEA)、聚四氢呋喃醚二醇(PTMG)、聚己内酯二醇(PCL)及聚碳酸己二醇酯二醇(PCDL)作为软段,以二苯基甲烷二异氰酸酯(MDI)和扩链剂1,4-丁二醇(BDO)作为硬段,采用预聚体法制备了4种不同软段结构的热塑性聚氨酯弹性体(TPU)。研究了不同的软段结构对弹性体的力学性能和动态黏弹性能的影响。结果表明,PTMG由于分子间作用力小,由其制备的TPU力学性能较低,但动态黏弹性能较好,内生热低;PCDL由于极性大、结晶性强,由其制备的TPU力学性能好,但内生热较大。  相似文献   

5.
以二羟甲基丙酸(DMPA)为亲水扩链剂,4种同等相对分子质量、具有不同软段结构的二元醇为软段,异佛尔酮二异氰酸酯(IPDI)为硬段,制备了一系列水性聚氨酯。结果表明,聚己二酸新戊二醇酯(PNA)基、聚己内酯(PCL)基[HW1]水性聚氨酯的粒径较小,聚碳酸酯(PCDL)基水性聚氨酯的耐水性最好,聚四亚甲基醚二醇(PTMG)基的耐热性能较为优异,PCL基水性聚氨酯可在100%模量和断裂伸长率取得最佳的平衡。应用性能测试结果显示,PCL基、PCDL基水性聚氨酯所制备的合成革表面处理剂,具有更好的表面颜色牢度、附着性及耐磨性、不粘着性。  相似文献   

6.
以聚四氢呋喃二醇(PTMG)和聚己内酯二醇(PCL)为软段原料,2,4-甲苯二异氰酸酯(2,4-TDI)、4,4'-二苯基甲烷二异氰酸酯(MDI)、3,3'-二氯-4,4'-二氨基二苯基甲烷(MOCA)和1,4-丁二醇(BDO)为硬段原料,采用预聚体法合成3种聚氨酯弹性体材料,研究了不同类型的聚氨酯弹性体的物理机械性能、高温物理机械性能以及耐乳化液性能。结果表明,聚氨酯弹性体PTMG-MDI-BDO和PCL-MDI-BDO的常温物理机械性能优于PTMG-TDI-MOCA; PTMG-TDI-MOCA在80℃和100℃下的高温物理机械性能优于PTMG-MDI-BDO和PCL-MDI-BDO;含MDI-BDO硬段的聚氨酯弹性体耐85℃水乳化液性能优于含TDI-MOCA硬段的。PCL-MDI-BDO是3种聚氨酯弹性体中最适合用作采煤机械液压支护设备油缸密封件的材料。  相似文献   

7.
以聚己二酸丁二醇酯二醇(PBA)、聚己内酯二醇(PCL)、聚碳酸酯二醇(PCDL)和聚四亚甲基醚二醇(PTMG)作为软段,采用一步法制得4种热塑性聚氨酯弹性体(TPU)。通过FTIR、电子拉力试验机、DSC、TGA和DMA分析研究了软段结构对TPU的物理机械性能、热性能和动态力学性能的影响。结果表明,在软段分子量和硬段含量相同时,PTMG-TPU和PCL-TPU较PBA-TPU和PCDL-TPU具有较低的硬度、模量、压缩永久变形和较高的弹性。PBA-TPU和PTMG-TPU显示较高微相分离程度和热稳定性;PCDL-TPU则显示较高的相混合程度。在低于玻璃化转变温度(Tg)时其储能模量降低次序为PCDL-TPUPBA-TPUPCL-TPUPTMG-TPU,Tg增大的次序为PTMGTPUPCL-TPU≈PBA-TPUPCDL-TPU。  相似文献   

8.
分别以聚四氢呋喃二醇(PTMG)、聚氧化丙烯二醇(PPG)及两者共混物(PTMG/PPG)作为软段,以2,4-甲苯二异氰酸酯(TDI)和扩链剂3,3'-二氯-4,4'-二氨基二苯甲烷(MOCA)作为硬段,采用预聚体法,制备了5种不同PTMG/PPG配比的浇注型聚氨酯弹性体(CPU)。研究了PTMG/PPG不同的配比对CPU的力学性能和微观相分离的影响。结果表明,纯PTMG型聚氨酯力学性能优于纯PPG型聚氨酯性能,随着PPG在混合聚醚多元醇的比例增加,所形成的CPU的力学性能出现一定程度的下降。纯PTMG型聚氨酯的玻璃化转变温度(Tg)低于纯PPG型聚氨酯的Tg,随着PPG在混合聚醚中的配比增加,所合成相应的聚氨酯弹性体的Tg移向高温区,微观相分离程度减小。  相似文献   

9.
采用预聚物法,选用二苯基甲烷二异氰酸酯(MDI)体系考察了聚己内酯二醇PCL220N和聚四氢呋喃PTMG1000配比对聚氨酯弹性体性能的影响。结果表明,当PCL220N/PTMG1000配比为80/20时,用其制得的聚氨酯弹性体力学性能较为优异;当PCL220N/PTMG1000配比为70/30时,弹性体损耗模量和损耗因子都最低;储能模量、耐磨性和回弹性都随PTMG1000用量的增大而增大。  相似文献   

10.
以对苯二酚二羟乙基醚(HQEE)为扩链剂,采用半预聚体法合成了一系列聚氨酯(PU)弹性体。研究了不同n(HQEE):n[聚ε–己内酯二醇(PCL)]、不同结构多元醇对浇注型聚氨酯弹性体的力学性能、热性能和动态力学性能的影响。结果表明:半预聚体法使扩链剂组分的相容性和弹性体的合成工艺得到明显改善;随n(HQEE):n(PCL)的增大,弹性体的硬度、模量和撕裂强度逐渐提高,冲击回弹和断裂伸长率逐渐降低,拉伸强度先增大后降低,当n(HQEE):n(PCL)=3.0时,综合力学性能最佳;在不同结构多元醇合成的PU中,PTMG(聚四亚甲基醚二醇)–PU具有较好的回弹性,PCDL(聚碳酸酯二醇)–PU具有较高的模量和撕裂强度,PCL–PU和PBA(聚己二酸–1,4–丁二醇酯)–PU则具有较高的拉伸强度和断裂伸长率。差示扫描量热法(DSC)、热重分析(TGA)和动态热机械分析(DMA)结果显示:所有的PU均显示不同的微相分离程度,依次为PTMG–PUPCL–PUPBA–PUPCDL–PU。PTMG–PU和PCL–PU具有很好的弹性和耐低温性;4种PU的起始分解温度均高于300℃,说明由HQEE扩链的PU具有良好的热稳定性。  相似文献   

11.
TODI类浇注型聚氨酯弹性体的耐热性能研究   总被引:2,自引:0,他引:2  
用3,3'-二甲基-4,4'-联苯二异氰酸酯(TODI)与聚四氢呋喃(PTMG)、聚己内酯多元醇(PCL)合成了一系列浇注型聚氨酯弹性体,考察了不同聚合物多元醇、扩链剂以及硬段含量对弹性体耐热性能和力学性能的影响.结果表明:PCL体系的耐热性能和力学性能优于PTMG体系,其拉伸强度在120℃下保有率>90%;用3,3'...  相似文献   

12.
分别以聚四氢呋喃二醇(PTMEG)、聚己二酸丁二醇酯二醇(PBA)、聚己内酯二醇(PCL)或聚碳酸酯二醇(PCDL)为软段原料,4,4'-二苯基甲烷二异氰酸酯和1,4-丁二醇为硬段原料,采用预聚体法合成了不同软段、相同软段含量的热塑性聚氨酯弹性体(TPU)。研究了软段类型对TPU力学性能和耐介质性能的影响。结果表明,聚醚型TPU具有更高的断裂伸长率和弹性回复率,聚酯型TPU具有更高的硬度、拉伸强度和撕裂强度;在100℃下热老化70 h均具有很好的性能保持率;TPU耐70℃和100℃热水老化的优劣顺序为PCDL型PTMEG型、PCL型PBA型;耐100℃液压油优劣顺序为PCDL型PTMEG型PCL型PBA型,仅PCDL型TPU能在120℃液压油中长期使用。  相似文献   

13.
采用预聚体法,以二苯基甲烷二异氰酸酯(MDI-100)为基础体系,合成了软段中PTMG2000和PCL2000比例分别为80/20,60/40,50/50,40/60,20/80的聚氨酯弹性体(CPU).通过力学性能、耐磨性、耐低温性能测试研究了两种多元醇并用对聚氨酯弹性体性能的影响.结果 表明:软段中PCL含量增加可...  相似文献   

14.
聚四甲撑二醇热塑性聚氨酯弹性体的合成研究   总被引:1,自引:0,他引:1  
七十年代初期,以聚四甲撑二醇(PTMG)为主要原料的聚醚型热塑性聚氨酯弹性体开始有商品生产。我们用PTMG和4,4′-二苯基甲烷二异氰酸酯(MDI)合成了具有较好物理机械性能和加工工艺性能的聚四甲撑二醇热塑性聚氨酯(PTMG-TPU)弹性体。  相似文献   

15.
张晓华  曹亚 《中国塑料》2005,19(8):27-31
采用不同结构的软段、扩链剂l,4-丁二醇和异佛尔酮二异氰酸酯(IPDI)为主要原料合成了透明聚氨酯弹性体。研究了软段结构变化对聚氨酯弹性体的微相结构、力学性能、热稳定性及光学透明性的影响。结果表明,相对分子质量高的软段比相对分子质量低的软段更易结晶,耐低温性能更好;与聚氧四亚甲基二醇(PTMG)相比,聚酯型聚己二酸丁二醇酯二醇(PBAG)更易结晶。结晶尺寸在纳米级,材料的透明性可达85%以上。软段含量增加对软段区的结晶影响较小,但力学性能下降明显。混合多元醇的加入进一步提高了聚氨酯弹性体的微相分离程度,有利于软段结晶,在宏观上表现为拉伸强度和弹性模量明显增加。  相似文献   

16.
采用聚碳酸酯二醇(PCDL)、聚四亚甲基醚二醇(PTMG)和4,4′-二苯基甲烷二异氰酸酯通过预聚体法和半预聚体法合成了一系列聚氨酯(PU)弹性体。采用示差热扫描量热,热失重和动态力学性能分析对PU弹性体的性能及多元醇结构和组成,合成方法对PU弹性体微相结构形态的影响进行了研究。结果表明,由预聚体法合成的弹性体的微相分离程度高于半预聚体法,二胺扩链的弹性体的硬段结晶性优于二醇扩链的弹性体,单一二醇合成弹性体的硬段的结晶性优于混合二醇合成的弹性体,几种弹性体的的硬段结晶性依次为PU-LF-950APU-PCDL≈PUPTMGPU-PCDL+PTMG。几种弹性体的热稳定性依次为PU-PCDLPU-PCDL+PTMG≈PU-PTMGPU-LF-950A。PU-LF-950A和PU-PTMG的低温性能优于PU-PCDL和PU-PCDL+PTMG。PU-LF-950A还具有较好的高温动态性能和微相分离程度。  相似文献   

17.
以聚己二酸丁二醇酯二醇 (PBA) ,聚四氢呋喃二醇 (PTMG)及聚氧化丙烯二醇 (PPG)为软段 ,以 4,4’ -二苯甲烷二异氰酸酯 (MDI)和 1,4-丁二醇为硬软 ,制备了一系列快速固化单组分聚氨酯反应型热熔胶 ,考察了不同软段对热熔胶的粘接强度、耐水性、耐热性、结晶度等的影响。结果表明 ,以PTMG为软段制得的热熔胶具有较佳的综合性能  相似文献   

18.
采用聚己二酸丁二醇酯(PBA)和聚四亚甲基醚二醇(PTMG)作为聚氨酯软段,与1,5-萘二异氰酸酯(NDI)、乙二胺(EDA)、丁二醇(BDO)反应合成了PBA-PTMG嵌段聚氨酯弹性体。通过示差扫描量热法分析了不同伸长率下聚氨酯弹性体内部结构及其耐磨性能的变化。结果表明,随着伸长率的增大,聚氨酯中软段相与硬段相间的氢键和C—N化学键发生断裂,降低了软、硬段相间的结合强度;当聚氨酯的伸长率小于10%时,PBA-PTMG嵌段聚氨酯弹性体具有良好的动态耐磨性能。  相似文献   

19.
以聚乙二醇(PEG)和聚四氢呋喃醚二醇(PTMG)为软段、1,6-六亚甲基二氨基甲酸甲酯(HDC)为硬段、二月桂酸二丁基锡(DBTDL)为催化剂、1,4丁二醇为扩链剂,采用酯交换缩聚法制备共聚醚型聚氨酯弹性体(CEUs)。通过一系列单因素对比实验,探讨了物料配比、预聚温度、预聚时间、缩聚温度和缩聚时间等对聚氨酯弹性体力学性能的影响。结果表明,在物料配比n(PTMG+PEG)∶n(HDC)∶n(BDO)=1.0∶0.9∶0.1、预聚温度为130℃、预聚时间为45 min、缩聚温度为175℃、缩聚时间为180 min的条件下,聚氨酯弹性体的断裂拉伸强度为61 MPa,断裂拉伸率为2718%。  相似文献   

20.
TDI与DMTDA为硬链段的浇注型PU弹性体的合成与性能研究   总被引:1,自引:0,他引:1  
采用2,4-甲苯二异氰酸酯(TDI)和3,5-二甲硫基甲苯二胺(DMTDA)为硬段单体,与不同结构的软段(聚酯、聚醚)缩聚制备了浇注聚氨酯弹性体.研究了软段结构变化对聚氨酯弹性体的力学性能、耐湿、热性能、磨耗、耐溶剂性以及动态性能的影响.结果表明,PCL弹性体能够表现出PEA型弹性体的优良抗撕裂和应力-应变行为,同时又有类似PTMG型弹性体的突出压缩永久变形和回弹性能,而且具有较好的抗湿滑性能和良好的动态使用性能,其综合性能更加平衡.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号