首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对往复压缩机振动加速度信号的非线性、非平稳等特性,提出一种基于自适应噪声完备集合经验模态分解(CEEMDAN)和精细复合多尺度散布熵(RCMDE)的往复压缩机轴承故障特征提取方法。采用CEEMDAN方法对信号进行分解时,通过不同的参数组合,可得到不同的IMF分量;计算不同参数条件下重构后的信号的峭度值,选用峭度值最大的一组参数重新对信号进行CEEMDAN分解,并进行信号重构。对重构后的信号进行RCMDE分析,提取故障特征向量,并利用支持向量机(SVM)进行分类识别。将优选参数的CEEMDAN分解方法和原CEEMDAN分解方法进行对比,结果表明:优选参数的CEEMDAN分解方法能更好地提取往复压缩机周期冲击性信号,有利于提高故障诊断的精确度。  相似文献   

2.
郑惠萍 《机床与液压》2023,51(19):216-222
针对非线性、非稳定振动信号难以提取有效故障特征的问题,提出一种基于改进自适应噪声完备集合经验模态分解(CEEMDAN)和t-分布随机邻域嵌入(t-SNE)算法相结合的故障特征提取方法。利用三次Hermite插值代替三次样条插值构造包络线,提高传统CEEMDAN对非平稳信号的分解精度;利用改进后的CEEMDAN对原始信号分解并通过相关系数筛选出有效固有模态分量(IMF),提取有效IMF分量的时频特征、奇异值和能量值构建高维混合域特征集;最后,通过t-SNE算法挖掘高维混合域特征信息得到低维敏感特征,并将其输入到支持向量机中进行分类,以分类准确率作为特征提取效果评价指标。在齿轮箱故障模拟实验台进行实验验证,结果表明该方法能够准确地提取故障特征,为故障特征提取提供新思路。  相似文献   

3.
航空液压管路是飞机液压系统的重要组成部分,为了对其早期故障进行准确识别及预测,针对航空液压管路中早期微弱故障振动信号进行研究,利用自适应白噪声完备总体经验模态分解方法将信号分解为多个分量,搭建ResNet网络结构,并将获得的分量输入到深度残差网络(ResNet)进行训练测试。实验结果表明:CEEMDAN-ResNet模型故障识别率可达99.78%,故障预测训练迭代到1 200次时,准确率将会达到99.5%左右并持续稳定,验证了所建立的CEEMDAN-ResNet模型对航空液压管路早期故障识别与预测的准确性、可行性。  相似文献   

4.
由于供输弹系统早期故障信号成分复杂,故障特征微弱,故提出一种基于自适应噪声完备经验模态分解(CEEMDAN)与以冯诺依曼拓扑结构(VN)改进鲸鱼算法(WOA)优化下的最小二乘支持向量机(LSSVM)的故障诊断方法。在对所测信号进行预处理即去趋势项和零点漂移后,通过CEEMDAN对供输弹信号进行分解,得出模态分量(IMF);然后依据相关系数和峭度准则这两个标准来选取符合标准的IMF分量,提取这些分量的分布熵(DE)作为特征;最后用VNWOA-LSSVM诊断模型,输入供输弹系统3种不同工况下的振动信号特征进行故障诊断,并且还对比了LSSVM、PSO-LSSVM、GA-LSSVM和WOA-LSSVM等方法对故障的识别率。实验结果表明:这些方法中经VNWOA优化后的LSSVM的识别率最高,高达94.03%。  相似文献   

5.
噪声情况下精确地对齿轮箱进行故障诊断是齿轮箱故障诊断的难题。为了解决该难题,采取自适应小波对自适应噪声完全集合经验模态分解(CEEMDAN)分量进行分解降噪与重组,并提出卷积神经网络(CNN)结合Inception模块的一维卷积神经网络(BICNN)提取重构信号的基本数字特征,同时使用长短期记忆提取BICNN所提取到的特征之间的相关性特征,对齿轮箱进行故障诊断研究。诊断结果表明:所提出的方法具有较高的抗噪声能力,并且齿轮箱在受到-4 dB噪声干扰的情况下,所提出的方法仍然可以获得99.63%的训练精度。  相似文献   

6.
针对刀具退化特征提取困难和传统时空网络模型参数多等问题,提出了基于自适应噪声完备经验模态分解(CEEMDAN)和改进轻量化时空网络(BiLSTM-SN-ECA)的刀具磨损监测模型。首先,将刀具振动信号经CEEMADAN分解得到若干模态分量,将模态分量与振动信号结合,构造特征矩阵;其次,利用ECA改进ShuffleNetv2基本单元,并优化ShuffleNetv2整体结构,构造BiLSTM-SN-ECA网络模型;最后,将特征矩阵输入模型进行特征学习与磨损预测。所提方法预测值的平均绝对误差和均方根误差分别为1.246μm和2.065μm,结果表明该方法在减少传统时空网络模型参数量与训练时间的同时,提高了预测准确度。  相似文献   

7.
针对轴承早期故障信号微弱、故障特征难以提取的问题,提出一种将完备集合经验模态分解(CEEMDAN)与快速独立分量分析(FastICA)相结合的故障特征提取方法.该方法首先利用CEEMDAN将轴承故障信号进行分解,得到一系列模态分量(IMF);然后依据峭度准则选取相应分量进行重构,引入虚拟噪声通道;最后利用FastICA...  相似文献   

8.
针对传统K-SVD算法在训练字典过程中,容易受到噪声干扰以及字典原子间相干性较大不足以表示信号内部结构的问题,文章提出了基于集合经验模态分解(EEMD)和低相干K-SVD相结合进行齿轮故障特征提取的方法。该方法利用EEMD对原始信号进行分解,通过峭度准则选取最优模态分量作为训练样本,以降低噪声的干扰;采用低相干K-SVD算法对训练样本进行学习,构造出低相干字典;最后,采用正交匹配追踪(OMP)算法求解稀疏系数,重构得到稀疏信号;通过仿真及实验数据进行验证,结果表明,EEMD和低相干K-SVD相结合的方法可以准确构建出匹配信号特征成分的字典,提高了信号重构性能。  相似文献   

9.
以行星齿轮箱为研究对象,针对经验模态分解(EMD)存在模态混叠、易出现端点效应等缺陷,导致难以很好地解决行星齿轮箱振动信号耦合及非线性特征的提取问题。本文以自适应噪声完备总体经验模态分解(ANCEEMD)为信号处理方法,引入样本熵进行特征提取,应用群智能融合算法优化的神经网络模型对行星齿轮箱故障进行识别和诊断。对于混合蛙跳算法(SFLA)与粒子群优化算法(PSO),实施“两层优化和内外循环”的融合机制,提出SFLA-PSO融合算法。开展了行星齿轮模拟故障实验,采集了行星齿轮箱的多种故障的振动信号,进行了样本熵特征提取,应用SFLA-PSO融合算法优化了BP神经网络模型,对行星齿轮箱故障进行识别诊断。结果表明:基于ANCEEMD样本熵特征提取的SFLA-PSO-BP诊断模型较PSO-BP和BP在行星齿轮箱故障诊断中的准确率分别提高了5%、15%。  相似文献   

10.
金成功 《机床与液压》2020,48(16):218-223
针对齿轮箱轴承信号非平稳性及其故障特征难以提取的问题,提出一种自适应白噪声平均总体经验模态分解(CEEMDAN)能量熵和马氏距离相结合的故障诊断方法。首先采用CEEMDAN方法对非平稳的轴承故障信号进行分解,获得若干阶表征信号特性的固有模态函数(IMF)分量;然后计算各IMF分量的自相关函数和相关系数,以滤除信号内的噪声干扰和对故障特征不敏感的IMF分量;最后计算各敏感故障特征分量的能量熵,将其作为特征参数形成状态特征向量,并使用马氏距离判别方法对轴承的工作状态和故障类型进行诊断。通过对实测不同工况以及不同故障程度的齿轮箱轴承信号的分析,证明了所提方法的有效性。  相似文献   

11.
梁士通  马洁 《机床与液压》2022,50(2):172-177
针对强噪声下微小故障信号容易被噪声淹没的问题,提出基于最大二阶循环平稳盲解卷积(CYCBD)和自适应噪声完全集合经验模态分解(CEEMDAN)的轴承微小故障诊断方法。根据故障频率公式求出振动信号的故障频率,并根据故障频率设置对应的循环频率集,用CYCBD对原信号进行滤波,使信号中的周期冲击成分更加突出,从而达到提高信噪比的目的;对处理后的信号进行CEEMDAN,得到一系列模态分量,再求各模态分量的峭度值,从中选取峭度值高的即含有较多故障特征的若干分量进行重构;对重构后的信号求其Hilbert包络谱,从中提取故障频率。采用仿真信号与西储大学轴承数据集进行仿真与实验研究,验证所提方法的有效性。  相似文献   

12.
为对行星齿轮进行故障诊断,采用自适应噪声完备总体经验模态分解(CEEMDAN)方法对采集的信号进行分解。对分解得到的各IMF分量进行相关系数计算,优选出与原始信号相关性较大的前4阶分量进行样本熵计算,得到特征值,构成特征向量。将特征向量输入到概率神经网络系统中进行诊断,且与基于局域均值分解的样本熵特征提取方法的诊断结果进行对比。结果表明:利用CEEMDAN样本熵提取的特征值能更精准地反映系统的故障特性,故障诊断的正确率高。  相似文献   

13.
姚楠  张能  刘子全  李利荣 《机床与液压》2023,51(12):195-203
声音信号在收集时具有非接触测量的优势,但容易受到周围环境噪声的干扰而导致信噪比较低,不利于特征信息的获取。为从滚动轴承声音数据中提炼出有效的特征信息,并实现故障的精准识别,提出一种基于自适应噪声完全集成经验模态分解(CEEMDAN)和层次波动离散熵(HFDE)的声音信号故障诊断策略。在该策略中,CEEMDAN缓解了集成经验模态分解(EEMD)的模态混淆缺陷;针对传统多尺度波动离散熵(MFDE)无法考虑时间序列的高频信息的缺陷,提出一种基于层次化处理的层次波动离散熵非线性动力学指标。将所提策略用于滚动轴承的故障识别,能够检测出不同故障状态下的声音数据。通过数值模拟和滚动轴承实验数据分析,将所提方法与CEEMDAN-MFDE、EEMD-HFDE、EEMD-MFDE、HFDE和MFDE进行对比。结果表明:所提方法达到了100%的识别准确率,多次实验的平均识别准确率也达到了99.5%,均高于对比方法,从而验证了该策略的有效性和优越性。  相似文献   

14.
针对变频环境下异步电机故障时定子电流信号非平稳的问题,提出一种互补集合经验模态分解(CEEMD)与卷积神经网络(CNN)结合的异步电机故障诊断方法。首先通过ANSYS对变频环境下电机建模获得仿真电流数据,利用CEEMD将电机定子电流信号分解为一系列本征模态函数(IMF);其次通过计算排列熵和样本熵,选取复杂程度小的IMF分量并计算其平均值来提取出故障特征;接着将特征数据集输入卷积神经网络(CNN)进行训练和验证;最后搭建实验平台收集电流信号,对信号进行滤波和CEEMD分解重构,放入CNN训练好的模型进行测试,识别率达95.56%。证明了该方法是一种可行的异步电机故障诊断方法,可实现对异步电机正常、转子断条和气隙偏心状态的准确识别。  相似文献   

15.
针对轴承故障信号常混有噪声干扰且故障特征难以准确提取问题,提出一种基于小波阈值去噪(WTD)和互补集合经验模态分解(CEEMD)的轴承故障特征提取方法。采用WTD对原始信号进行降噪预处理;对去噪信号进行CEEMD分解得到一系列本征模态函数(IMF);然后计算各个IMF和去噪信号的互相关系数,通过设定互相关系数阈值筛选有用IMF;最后将有用IMF重构并利用包络谱对重构信号提取故障特征频率。实测信号表明:所提出的方法能降低噪声干扰并有效提取故障特征信息,证明该方法在噪声环境下具有较高的可行性和较强的实用性。  相似文献   

16.
螺栓在工程结构和机械系统中有着广泛的应用,作为整个系统中较为薄弱的部分,一旦发生松脱可能会造成灾难性的后果,所以很有必要对螺栓的连接状态进行实时监测。由于在不同拧紧状态下,螺栓内部的微观结构不同,对不同拧紧力的螺栓进行敲击产生的声信号也有一定的区别,对7种不同拧紧力矩下的螺栓进行敲击,并将敲击发生后0.26 s声信号的频谱图与经过经验模态分解处理之后前两阶IMF分量的频谱图进行对比。实验结果中对原敲击信号直接做快速傅里叶变换的主频值随拧紧力矩变化的规律并不明显,而原信号经过经验模态分解之后,敲击信号的前两阶模态函数的频谱图中峰值点对应的频率值均随螺栓拧紧力矩的增加而升高。结果表明对敲击声信号进行经验模态分解,通过分析前两阶IMF分量的峰值频率可有效识别螺栓的连接状态。  相似文献   

17.
在ST12冷轧板上用线切割加工出不同深度的狭缝来模拟钢板中缝类缺陷。采用一发一收方式在钢板上激励出兰姆波进行检测,用经验模态分解(EMD)技术对Lamb波与缺陷作用的响应信号进行处理,并用波形指数对响应信号的各阶固有模态函数(IMF)进行量化,定征了缺陷状态并客观判断了缺陷对Lamb波影响。结果表明:用波形指数的变化可较好地发现构件中材料的不连续特性,这一数字参数在小缺陷的检测以及客观评价方面将有较好的应用前景。  相似文献   

18.
通过分析对比几种常见的无损检测技术,提出用涡流探伤检测高频薄壁铝焊管焊缝质量的新方法,并针对输出的检测信号非线性、非平稳的特点,探讨了几种现代信号分析方法,并分析了它们的优缺点和经验模态分解(EMD)方法在检测涡流探伤信号上的应用优势,指出经验模态分解方法的应用前景。  相似文献   

19.
滚动轴承作为旋转机械的重要组成部分,在恶劣环境运行导致振动信号具有非线性和非平稳的特点,使得区分故障信号和正常信号变得困难。针对此,提出一种结合多模态互量纲一化(MMDI)与宽度学习系统(BLS)的智能故障诊断方法。通过优化完全自适应噪声集合经验模态(OCEEMDAN)与小波阈值对轴承观测信号进行分解处理,对有效的本征模态函数(IMF)重构并提取MDI,构建了一批MMDI;采用反向传播算法(BP)与堆叠模块方式优化BLS,改进的BLS算法能够快速识别不同的故障类型;最后通过凯斯西储大学轴承数据中心与某实验室提供的轴承数据集对所提方法进行验证,平均准确率分别为99.8%与100%,验证了方法的有效性。  相似文献   

20.
金刘  王勇 《机床与液压》2015,43(15):194-196
希尔伯特—黄变换展示了在处理非稳态信号方面的优越性,但对于深海环境强噪声背景下的上升流弱信号,直接进行EMD提取主要成分时将会出现分解效率低和严重的模态混淆。为了消除噪声对EMD分解质量的影响,提出了先对含噪声弱信号进行小波去噪,然后再进行EMD分解。通过理论分析及计算机仿真,证实了该法克服了噪声对直接运用EMD的干扰,提高了含噪信号EMD分解的效率和准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号