首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
使用预应力筋材内嵌加固工艺,对10根混凝土梁试件进行了加固后的试验研究。试验证明,预应力筋材内嵌加固法,能够很好地改善混凝土梁试件的整体稳定性,加固后混凝土梁试件的开裂荷载值、屈服荷载值和极限荷载值有显著提高。随加固量及张拉预应力值的不同,加固梁的开裂荷载值提高了72.6%~321.26%,屈服荷载值提高了6.19%~99.09%,极限荷载值提高了46.04%~135.27%。说明预应力筋材内嵌加固法能够有效改善加固梁的延性和安全性能,刚度也有明显提高,对裂缝的产生和发展都有约束作用,同时螺旋肋钢丝的高强性能也得到了充分发挥。  相似文献   

2.
采用内嵌预应力加固法张拉系统,提出开槽、加固和张拉螺旋肋钢丝、填胶的施工工艺,并在此基础上,进行了10个内嵌预应力螺旋肋钢丝加固混凝土梁试件的试验研究。结果表明,采用内嵌预应力螺旋肋钢丝加固法,能够较好地改善被加固钢筋混凝土梁的整体工作性能,大幅度提高其开裂荷载,对屈服荷载和极限荷载也有明显的改善。随加固量及预应力水平不同被加固梁开裂荷载提高幅度为72.6%~321.26%,屈服荷载提高幅度为6.19%~99.09%,极限荷载提高幅度为46.04%~135.27%,加固效果明显。该加固方法能够有效改善加固梁的延性和安全性能,梁试件刚度提高明显,对裂缝的产生和发展都有约束作用,具有良好的加固效果,同时螺旋肋钢丝的高强性能也得到了充分发挥。  相似文献   

3.
探讨了内嵌碳纤维筋和内嵌螺旋肋钢丝加固混凝土构件对比试验研究,并分析了不同筋材,加固量对被加固构件抗弯性能的影响.结果表明:两种加固方法均能大幅度提高被加同构件的极限承载力,改善梁的裂缝开展情况,但内嵌碳纤维筋加固方法易于发生黏结破坏,螺旋肋钢丝的黏结效果较好,且在经济性上明显优于碳纤维材料,更利于在工程实际中推广应用...  相似文献   

4.
表层内嵌桁架螺旋肋筋加固混凝土梁抗弯试验研究   总被引:2,自引:0,他引:2  
按正常配筋浇筑了18根钢筋混凝土梁,根据螺旋肋筋与钢筋连接方式的不同,在混凝土梁受拉区混凝土保护层内开槽,在槽内嵌入螺旋肋筋或螺旋肋筋与钢筋组成的桁架,用专用树脂对槽道进行充填,待树脂固化完成后,对梁进行弯曲试验。试验研究表明:内嵌螺旋肋筋及其与钢筋组合桁架加固后的混凝土梁,其极限承载能力、刚度及抗裂性能均有明显改善。随着嵌入加固量的增加,加固梁的极限承载能力得到明显提升,钢筋与螺旋肋筋的焊接点是薄弱环节,导致加固梁出现脆性破坏特征;与对比梁相比,内嵌1根螺旋肋筋加固的混凝土梁极限承载能力提高了35.1%和42.2%;内嵌2根螺旋肋筋加固的混凝土梁极限承载能力提高了73.3%和77.8%。  相似文献   

5.
内嵌预应力碳纤维筋加固混凝土梁受力性能试验研究   总被引:2,自引:0,他引:2  
通过对内嵌预应力碳纤维加固混凝土梁的静力加载试验,对其受力过程、破坏形态、承载力、延性和变形情况进行了分析。试验结果表明:内嵌预应力碳纤维筋加固混凝土梁能大幅度提高被加固梁的开裂荷载和极限荷载,延迟裂缝开展,改善梁的正常使用状态;有效减小加固构件的变形,延缓筋材屈服,充分利用碳纤维筋的高强性能;且随着加固量及初始预应力水平的提高,被加固试件的延性有所降低。内嵌预应力碳纤维筋加固法能有效解决现有加固方法在材料利用不充分,粘结剥离破坏等方面的缺点,是一种行之有效的加固方法。  相似文献   

6.
钢-连续纤维复合筋(SFCB)嵌入式加固混凝土梁试验研究   总被引:2,自引:1,他引:1  
通过1根对比梁、4根钢-连续纤维复合筋(SFCB)及1根CFRP筋嵌入式加固钢筋混凝土梁的抗弯试验,从各阶段荷载、截面刚度、延性、裂缝情况等方面对其抗弯加固性能进行了全面的比较分析.试验证明,嵌入SFCB抗弯加固能同时显著提高受弯构件正常使用阶段的刚度和极限阶段的承载力,在具有CFRP筋材理想耐腐蚀性能的同时,而成本却远低于目前所用的CFRP筋,是一种高性能低成本的高效加固方式.  相似文献   

7.
丁亚红  郝慧敏 《工业建筑》2012,42(11):140-144
基于内嵌碳纤维(简称CFRP)筋抗弯加固混凝土梁的试验研究,开展变加固量内嵌CFRP筋加固梁可靠指标计算分析,探讨内嵌CFRP筋加固钢筋混凝土梁的可靠度水平随加固量的变化情况。结果表明:内嵌CFRP筋加固梁能够充分利用CFRP的高强特点,明显提高被加固梁的可靠性,其可靠指标提高幅度最大为79.52%。综合各方面因素分析可知,内嵌2根CFRP筋的加固效果最好。  相似文献   

8.
为了充分发挥碳纤维增强塑料(CFRP)筋的高强性能,更有效提高加固梁的力学性能,通过在混凝土梁受弯区表层开20 mm×20 mm的槽后,对直径为7 mm的CFRP筋施加不同水平的预应力并嵌入开好的槽中,并用专用结构胶填充槽道,待结构胶固化后进行加固梁的抗弯试验。通过对9根表层嵌入预应力CFRP筋加固梁和1根未加固梁的抗弯加载试验,初步研究了加固梁的刚度、特征荷载、延性及梁的裂缝发展与破坏模式。研究表明,预应力CFRP筋的高强性能得到充分发挥,加固梁的刚度显著提高,开裂荷载最大提高了303.17%,极限承载能力最大提高237.92%,延性基本能满足抗震要求,破坏模式表现为3种形式。  相似文献   

9.
嵌入式CFRP筋加固圆木柱轴心抗压性能试验   总被引:2,自引:0,他引:2  
为研究不同规格的嵌入式碳纤维增强复合材料(CFRP)筋加固圆木柱的破坏形态、轴心抗压承载力、荷载-应变关系,共进行了12根试件的抗压性能试验,包括4根未加固柱、4根内嵌Φ6 mmCFRP筋材的加固柱、4根内嵌Φ8 mm CFRP筋材的加固柱,其中松木和杉木各占一半.基于试验数据回归,提出了嵌入式CFRP筋加固圆木柱轴心抗压承载力的计算公式.试验结果表明:采用嵌入式CFRP筋加固后,圆木柱的轴心抗压承载力有不同程度的提高,提高幅度为6.2%~26.9%(松木)和26.4%~47.1%(杉木);其峰值压应变也有较小幅度的提高,荷载-纵向压应变曲线基本上呈直线,后期的塑性变形较小.  相似文献   

10.
为研究内嵌CFRP筋加固的宽缺口混凝土梁的裂缝特性,通过16根内嵌CFRP筋加固的混凝土梁静载试验,详细观测和研究了其开裂和裂缝扩展状况。基于FRP类材料加固混凝土梁应变协调的准平面假定,根据传统的钢筋混凝土裂缝研究理论,在充分考虑CFRP筋的力学贡献的前提下,对内嵌CFRP筋加固的普通混凝土梁、宽缺口混凝土梁的裂缝间距、裂缝宽度和最大裂缝宽度的计算式进行了理论推导。将理论算式的计算结果与试验实测结果进行了比对。研究结果表明:与对比梁相比,内嵌CFRP筋材加固的宽缺口混凝土梁和内嵌CFRP筋加固的普通混凝土梁的开裂裂缝和最大裂缝宽度均有大幅度降低,前者的裂缝宽度降低幅度要小于后者的。两类加固梁的最大裂缝宽度都随着CFRP加固量的增大而减小。裂缝间距、裂缝宽度和最大裂缝宽度的理论算式的计算结果与实测结果吻合较好。4个加固梁试件组的平均开裂裂缝均比对比梁的开裂裂缝宽度减少0.30mm。  相似文献   

11.
螺旋肋钢丝具有良好的低松驰性能和高强度,其锚固性能和延展性能比预应力碳纤维板更好。对预应力螺旋肋钢丝加固量、初始预应力等参数与结构屈服曲率、极限曲率之间的关系进行计算,推导出内嵌预应力螺旋肋钢丝加固混凝梁的延性系数计算式,以确保加固构件承载力提高的同时满足延性要求。在此基础上根据推导结果进行试验,将延性系数计算结果与试验研究结果进行对比理论计算结果与试验结果吻合良好表明推导出的延性系数计算式正确,可以在实际工程中使用。  相似文献   

12.
内嵌CFRP筋/片加固木梁受弯性能试验研究   总被引:1,自引:0,他引:1  
为研究内嵌CFRP筋/片加固木梁的受弯性能,制作5根底面中心内嵌CFRP筋加固试件,3根侧面内嵌CFRP筋加固试件,6根底面中心内嵌CFRP片加固试件以及3根未加固的对比试件,对其进行三分点静载试验。试验参数包括:CFRP筋/片,内嵌位置(底面或侧面),CFRP筋/片数量(1根或2根)、是否采用附加锚固措施(U形铁钉或CFRP布U形箍)、底面是否粘贴CFRP布等。研究表明,内嵌CFRP筋/片加固试件的受弯承载力较未加固试件明显提高,提高幅度为14%~85%,平均提高39%;破坏位移亦平均提高32%。内嵌CFRP筋加固试件的初始弯曲刚度均大于对比试件,而内嵌CFRP片加固试件由于底面开槽面积较大其初始弯曲刚度未见提高。内嵌CFRP筋加固试件的跨中截面应变随荷载增加仍基本符合平截面假定,而内嵌CFRP片加固木梁的跨中截面应变变化与平截面假定存在一定差距。增加内嵌CFRP筋/片的数量及端部采用U形铁钉锚固措施对提高加固木梁承载力的作用不明显;而在加固木梁底面粘贴一层CFRP布可显著提高其加固效果。  相似文献   

13.
钢绞线、FRP筋预应力加固混凝土梁抗弯性能试验研究   总被引:1,自引:1,他引:0  
纤维增强复合材料是一种新型的材料,对FRP筋材使用预应力的方式加固混凝土梁,是一种新兴的加固技术,可以有效地发挥FRP的高强性能。为了研究混凝土梁加固以后的抗弯性能,采用试验研究与理论分析相结合的方法,制作了12根混凝土梁试件,通过试验比较CFRP筋、BFRP筋和高强钢绞线3种预应力筋材的加固效果,包括开裂荷载、屈服荷载和极限承载力,对加固梁的裂缝开展、刚度提高以及破坏形式进行初步研究和探讨。  相似文献   

14.
为研究浅层埋设CFRP筋加固钢筋混凝土梁的效果,共制作了4根钢筋混凝土梁试件,采用两点加载模式。加固用CFRP筋直径为8 mm,并缠绕GFRP布增加与埋设用高强砂浆的粘结性能,CFRP筋埋设深度为10 mm。同时利用有限元ANSYS进行模拟分析,通过ANSYS APDL创建不同埋设深度的CFRP筋加固钢筋混凝土梁,分析CFRP筋的不同埋设深度对梁的内部应力分布以及挠度变形的影响,并探究CFRP筋加固后梁的裂缝发展趋势。试验和有限元分析结果表明:埋设CFRP筋能有效增加梁的承载能力;随着荷载的增加,梁的挠度增加速度较缓慢,说明CFRP筋的存在有效增加了梁抵抗变形的能力; CFRP筋可以改变钢筋混凝土梁内部的应力分布;减小CFRP筋的埋设深度,CFRP筋上的最大应力值先增大后减小; GFRP布的使用增加了CFRP筋与混凝土的抗滑移能力。  相似文献   

15.
预应力加固法在土木工程中的研究应用   总被引:1,自引:0,他引:1  
对各种预应力加固法的研究及其应用进行了描述,包括预应力纤维复合材料片材、筋材、布材加固法及预应力拉杆加固法、预应力高强钢丝绳加固法、预应力钢绞线加固法、内嵌预应力螺旋肋钢丝加固法,这些加固方法能显著的改善原结构的受力,有效延迟裂缝的开展,限制裂缝的宽度,提高结构的承载力,增大结构的抗变形能力。  相似文献   

16.
通过两点静力荷载作用下3根表层嵌贴FRP筋加固的钢筋混凝土T形损伤梁的试验,研究了嵌入式FRP筋加固梁的破坏特征和受力性能。分析了FRP筋表面特征和FRP筋材料种类对加固梁破坏模式、极限承载力、刚度等方面的影响。试验结果表明:嵌入式FRP筋加固方法能显著提高梁的屈服荷载和极限承载力;加固量一定时,带肋CFRP筋加固梁的极限承载力最高,光圆GFRP筋加固梁的极限承载力最低。在试验研究的基础上,建立了剥离破坏模式下嵌入式FRP筋加固梁的抗弯承载力计算公式,计算结果与试验结果吻合较好。  相似文献   

17.
内嵌CFRP板条加固混凝土梁的抗弯性能试验研究   总被引:6,自引:0,他引:6  
通过6根足尺混凝土梁的抗弯加固试验,对内嵌CFRP板条加固梁的破坏过程、受力性能、截面应变分布和挠度变形规律进行了研究。试验结果表明,内嵌CFRP板条加固梁跨中截面应变分布和挠度变形规律与外贴CFRP加固梁相似,但内嵌加固能有效避免板条的剥离破坏,其抗弯加固性能优于相应的外贴加固梁;预载加固将会降低内嵌板条的加固效果。基于混凝土结构加固理论,并考虑预加荷载的影响,对内嵌CFRP板条加固梁3种弯曲破坏形态(钢筋屈服前混凝土压碎、钢筋屈服后混凝土压碎和钢筋屈服后FRP拉断)下的抗弯承载力进行理论分析,并建立开裂弯矩、屈服弯矩和极限弯矩的计算公式,其计算结果与作者及国内外已有的试验实测值吻合较好,可用于实际工程加固设计。  相似文献   

18.
为研究内嵌钢筋外包碳纤维(CFRP)布复合加固木柱的轴压性能,对27根方形截面木柱和9根矩形截面木柱试件进行了轴心受压试验,主要考虑了不同加固方法、钢筋加固量、CFRP布包裹方式和截面形状等影响因素,观察了试件的破坏全过程及破坏形态,获取了试件的荷载-位移曲线及荷载-应变曲线,进而分析了各影响因素对木柱轴压性能的影响。研究结果表明:复合加固木柱的承载力和延性均高于单独CFRP布加固及嵌筋加固柱,采用内嵌钢筋外包CFRP布复合加固能显著提高原木柱的承载力和延性;随着钢筋加固量的增加,加固木柱试件的承载力和延性都显著提高;当CFRP布由间隔包裹变为全包时,加固木柱试件的延性有所增大,但承载力增长并不显著;在同种加固方法情况下,方形截面试件较矩形截面试件具有更高的承载力,而矩形截面试件较方形截面试件具有更好的延性。  相似文献   

19.
为了研究无粘结预应力碳纤维增强复合材料(CFRP)筋锚具的锚固性能和无粘结预应力CFRP筋混凝土梁的受力性能,进行了4根无粘结预应力CFRP筋混凝土梁和2根对比混凝土梁的抗弯试验。结果表明:研发的预应力CFRP筋锚具具有很好的可靠性,无粘结预应力CFRP筋混凝土梁具有较好的受力性能和延性,非预应力钢筋是影响预应力CFRP筋混凝土梁延性和极限荷载最重要的因素;推导的简化公式可以准确地计算无粘结预应力CFRP筋混凝土梁的极限荷载  相似文献   

20.
《混凝土》2010,(3)
针对内嵌预应力螺旋肋钢丝加固混凝土梁技术特点,研发了预应力螺旋肋钢丝张拉锚固体系,测试并分析了试验过程中预应力损失情况。结果表明,预应力损失随螺旋肋钢丝加固量及初始预应力水平的增加而增加,其中锚具变形和预应力筋内缩引起的预应力损失很小,不超过5%,应力松弛引起的预应力损失相对较大,在5%~10%之间,放张引起的预应力损失大小介于上述两种损失之间,一般不超过10%,且加固量及初始预应力水平对该项损失的影响较显著。研究结果为该新型加固技术更好地应用于实际工程提供了设计依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号