首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A facile method with the advantage of using only one single solvent throughout the whole processing was introduced to prepare graphite nanoplatelet (GNP) filled thermoplastic polyurethane (TPU) nanocomposites. Morphological studies showed that the employed method could provide the uniform dispersion of GNPs in the TPU matrix. Storage modulus of the nanocomposites was increased with increasing GNP content, and the improvement was more obvious at temperatures below the glass transition temperature (Tg) of TPU. For the nanocomposite that contains 3.9 vol% (the maximum loading employed in this study) of GNP, it still showed a long elongation at break of over 600%. Thermogravimetric analysis (TGA) showed that the incorporation of GNPs could improve the thermal stability of the nanocomposites. In addition, cone calorimetry results showed that the GNPs could act as intumescent flame retardant and significantly reduced the heat release rate (HRR), thus improved the flame retardancy of the TPU matrix.  相似文献   

2.
3.
The thermophysical and mechanical properties of compacted expanded graphite (EG) were studied. The experimental results were interpreted with application of similarity theory. The compacted EG critical density corresponding to the observed jump in the thermal conductivity coefficient and elasticity modulus was shown to depend on the expandable graphite preparation method, EG bulk density, and dispersion degree and amounted to 0.01 and 0.005 g/cm3 for the studied EGs.  相似文献   

4.
The paper is devoted to a review of methods and results of investigation of polymer nanocomposites both in world and domestic scientific practice. Experimental techniques for determination of their mechanical characteristics are considered. It is shown that modern materials science deals with a great variety of filled polymer composites. Their properties vary significantly depending on the filler type, which can be various kinds of nanosized structures and particles.  相似文献   

5.
Layered graphite oxide is used as host material for the synthesis of conducting polymer intercalated nanocomposites. Powder X-ray diffraction, Fourier transform infrared, and UV-VIS absorption spectra indicate the formation of polyaniline within the interlamellar spaces of graphite oxide. The red shift of UV-VIS absorption associated with graphite oxide is found. The direct current (dc) conductivity increases by about three orders of magnitude compare with pristine graphite oxide. The temperature dependence dc conductivity of the nanocomposite follows Mott's three-dimensional variable range hopping. The alternating current (ac) conductivity suggests correlated barrier hopping of conduction process. The conductivity relaxation time varies in the range of 10(-5)-10(-7) Sec.  相似文献   

6.
The focus of this research is to investigate how exfoliated graphite nanoplatelets, xGnP™, (graphene sheets ∼10 nm thickness, ∼1 μm diameter), a nanomaterial developed by the Drzal group, affects the crystallization of semicrystalline thermoplastics i.e., polypropylene (PP). In addition, this study explores how the presence of xGnP in combination with the processing conditions used to make the xGnP-PP nanocomposites alter the crystal structure and electrical conductivity of these systems. The nanocomposites are fabricated (i) by melt mixing followed by injection molding and (ii) by coating PP powder with xGnP with sonication in isopropyl alcohol followed by compression molding. PP was found to nucleate on the graphene surface of xGnP that is an effective nucleating agent for the β-form of PP crystals at low concentrations. The β-form of PP crystals has higher impact strength and toughness compared to the more common occurring α-form. It is found that the aspect ratio and concentration of xGnP combined with the crystallization conditions can be used to engineer the crystal structure such as the population and size distribution of PP spherulites and alter the electrical conductivity of xGnP-PP nanocomposites. The reason is that the presence of many small spherulites nucleated by the xGnP disrupts the percolated network formed by the conductive particles and thus increases the concentration required to reach conductivity and alters the conductivity value.  相似文献   

7.
Paraffin coated exfoliated graphite nanoplatelets (xGnP) reinforced with Linear Low-Density PolyEthylene (LLDPE) nanocomposites have been fabricated and characterized for mechanical, electrical and morphological properties. Paraffin was added to decrease the percolation threshold of electric conductivity. LLDPE–paraffin/xGnP nanocomposites were prepared by separate solution and total solution mixing methods. The mixture master batch of each mixing method was injection-molded to produce composites with a mini twin-screw extruder. The separate mixing method was not suitable since there was not enough electrical conductivity due to the low xGnP content in the nanocomposites. However, paraffin does not affect mechanical properties until around 30 wt% of content has been added, even though the content is low molecular weight polyethylene. When the total mixing method was used, the adding content of xGnP and paraffin was easily controlled. Five weight percentage of xGnP loaded nanocomposite showed electrical conductivity when 10 wt% of paraffin was added. From the results of SEM images of fracture surface and DSC, it could be seen that Paraffin was well coated on xGnP, resulting in a separate phase between xGnP and LLDPE. By coating paraffin on xGnP in the LLDPE matrix, the percolation threshold dramatically decreased compared to the xGnP–LLDPE nanocomposite.  相似文献   

8.
The focus of this study is to explore synergy between nanomaterials such as exfoliated graphite nanoplatelets (xGnP) and micro-size reinforcements such as kenaf natural fibers, in poly(lactic acid) based composites. The nano-biocomposites are made by melt-mixing followed by injection molding. Prior to melt-mixing the kenaf fibers were coated with the xGnP using sonication. The reinforcement content used in the study was up to 5 wt% and up to 40 wt% for xGnP and kenaf fibers, respectively. The flexural strength and modulus and the viscoelastic properties such as storage modulus were determined. It was found that addition of 5 wt% xGnP did not increase the viscosity of the polymer melt, enhanced the flexural modulus by 25–30% at any fiber loading used but did not increase the strength, indicating insufficient load transfer at the polymer-xGnP or xGnP-kenaf interface. Finally, addition of xGnP had a positive effect on the heat distortion temperature but only at higher fiber loadings.  相似文献   

9.
Polydimethylsiloxane (PDMS) hybrid composites consisting of exfoliated graphite nanoplatelets (xGnPs) and multiwalled carbon nanotubes functionalized with hydroxyl groups (MWCNTs-OH) were fabricated, and the effects of the xGnP/MWCNT-OH ratio on the thermal, electrical, and mechanical properties of polydimethylsiloxane (PDMS) hybrid composites were investigated. With the total filler content fixed at 4 wt%, a hybrid composite consisting of 75% × GnP/25% MWCNT-OH showed the highest thermal conductivity (0.392 W/m K) and electrical conductivity (1.24 × 10−3 S/m), which significantly exceeded the values shown by either of the respective single filler composites. The increased thermal and electrical conductivity found when both fillers are used in combination is attributed to the synergistic effect between the fillers that forms an interconnected hybrid network. In contrast, the various different combinations of the fillers only showed a modest effect on the mechanical behavior, thermal stability, and thermal expansion of the PDMS composite.  相似文献   

10.
Graphite nanoplatelets (GNP) were prepared by microwave irradiation of natural graphites intercalated with ferric chloride in nitromethane (GIC). Intercalated structure of GIC was confirmed by X-ray diffraction patterns. SEM images of GIC after microwave irradiation showed the exfoliation of GIC, the formation of GNPs. Hybrid nanocomposites of bisphenol-A type epoxy resins filled with GNP and a conductive carbon black (CB) were prepared and rheological and electrical properties of the nanocomposites were investigated. Viscosity and electrical surface resistivity of the nanocomposites showed minima at certain mixtures of GNP and CB in the epoxy resins.  相似文献   

11.
In this paper, the electrical conductivity and mechanical properties such as elastic modulus of multiwalled carbon nanotubes (MWCNTs) reinforced polypropylene (PP) nanocomposites were investigated both experimentally and theoretically. MWCNT-PP nanocomposites samples were produced using injection mold at different injection velocities. The range of the CNT fillers is from 0 up to 12?wt%. The influence of the injection velocity and the volume fraction of CNTs on both electrical conductivity and mechanical properties of the nanocomposites were studied. The injection speed showed some effect on the electrical conductivity, but no significant influence on the mechanical properties such as elastic modulus and stress-strain relations of the composites under tensile loading. Parallel to the experimental investigation, for electrical conductivity, a percolation theory was applied to study the electrical conductivity of the nanocomposite system in terms of content of nanotubes. Both Kirkpatrick (Rev Mod Phys 45:574?C588, 1973) and McLachlan et?al. (J Polym Sci B 43:3273?C3287, 2005) models were used to determine the transition from low conductivity to high conductivity in which designates as percolation threshold. It was found that the percolation threshold of CNT/PP composites is close to 3.8?wt%. For mechanical properties of the system, several micromechanical models were applied to elucidate the elastic properties of the nanocomposites. The results indicate that the interphase between the CNT and the polymers plays an important role in determining the elastic modulus of the system.  相似文献   

12.
High density polyethylene (HDPE) were filled with expanded graphite particles that have different particle sizes, 5–7 μm (EG5) and 40–55 μm (EG50) in diameter. Nanocomposites were prepared by the melt-mixing technique using EG5 and EG50 at different weight ratios. Transmission Electron Microscopy (TEM) was used to observe the morphology of the nanocomposites. X-ray diffraction patterns of EG5-HDPE and EG50-HDPE nanocomposites were investigated. Tensile tests were carried out to determine tensile strength, Young’s modulus and elongation at break values. The storage modulus and loss modulus were evaluated by Dynamic Mechanical Analysis (DMA). The effect of EG5 and EG50 on electrical conductivity of HDPE was also determined. The tensile strength of HDPE increased 18.7% and 8.5% when 40 wt% EG5 and EG50 was added into HDPE, respectively. The storage modulus of EG5-HDPE and EG50-HDPE is higher compared to that of HDPE. Incorporation of EG5 and EG10 into HDPE also increased the relaxation transition peak of HDPE. The values of electrical conductivity for EG50-HDPE nanocomposites under the same filler content obtained higher in comparison with those for EG5-HDPE nanocomposites.  相似文献   

13.
对天然鳞片石墨(GF)进行化学镀Cu的表面处理,对化学镀Cu石墨(Cu-GF)和Al粉采用真空热压的工艺制备出镀Cu石墨/Al(Cu-GF/Al)复合材料。研究了Cu-GF/Al复合材料的微观结构和微观界面,同时也研究了Cu-GF对Cu-GF/Al复合材料热导率和抗弯性能的影响。结果表明,GF上的Cu层能抑制界面脆弱相Al4C3的产生,使Cu-GF/Al复合材料的抗弯性能有了显著提升。当Cu-GF体积分数从50%增加到70%时,Cu-GF/Al复合材料的抗弯强度也从104 MPa降低到74 MPa。当GF体积分数为70%时,Cu-GF/Al复合材料的热导率达到最高值为522 W/(m·K)。  相似文献   

14.
通过原位乳化聚合制备了不同膨胀石墨含量(1%、2%、3%和4%质量分数)的聚丙烯腈-聚甲基丙烯酸甲酯共聚物/膨胀石墨纳米复合材料。通过紫外-可见和傅里叶变换红外光谱验证了共聚物及纳米复合材料结构的形成。用X射线衍射、扫描电镜、透射电镜研究了膨胀石墨在聚合物基体中的分散性及其形貌。用热重考察了复合材料的耐热稳定性,同时也考察了复合材料的电导特性及其阻抗随膨胀石墨含量的变化规律。研究表明,随着复合材料中石墨含量的增加,复合材料的氧气密性和热稳定性获得较大程度的改善。  相似文献   

15.
Journal of Materials Science - Carbon-fibre-reinforced polymer (CFRP) composites are promising materials for non-metallic pipe applications in the oil and gas industry owing to their high corrosion...  相似文献   

16.
Graphene nanosheets (GNSs) reinforced poly(butylene succinate) (PBS) nanocomposites are facilely obtained by a solution-based processing method. Graphene nanosheets, which are derived from chemically reduced graphite oxide (GO), are characterized by AFM, TEM, XRD and Raman spectra. The state of dispersion of the GNSs in the PBS matrix is examined by SEM observations that reveals homogeneous distribution of GNSs in PBS matrix. A 21% increase in tensile strength and a 24% improvement of storage modulus are achieved by addition of 2.0 wt% of GNS. The electrical conductivity and thermal stability of the graphene-based nanocomposite are also improved. DSC measurement indicates that the presence of graphene sheets does not have a remarkable impact on the crystallinity of the nanocomposites. Therefore, the high performances of the nanocomposites are mainly attributed to the uniform dispersion of GNSs in the polymer matrix and strong interfacial interactions between both components.  相似文献   

17.
18.
Exfoliated graphite nanoplates (xGnPs)/polystyrene-b-poly(ethylene-r-butylene)-b-polystyrene (SEBS) nanocomposites have been prepared by the simple melt-compounding approach. The structural, mechanical and viscoelastic properties of these composites were studied and compared. Wide-angle X-ray diffraction (WAXD) studies indicated that the processing of nanocomposites did not change the original d-spacing of xGnPs. Scanning electron microscopy observation on the fracture surfaces of the composites shows a uniform dispersion of xGnPs throughout SEBS matrix and strong interfacial adhesion between oxidized xGnPs and the matrix, which are responsible for the considerable enhancement of mechanical properties of the composites. It is found that the addition of xGnPs particles improved both the elastic modulus and storage modulus of pure SEBS significantly and the higher the xGnPs content, the higher the modulus of the nanocomposite. Moreover, the effects of dispersed xGnPs on the microphase separation of SEBS have also been investigated using small angle X-ray scattering (SAXS).  相似文献   

19.
Different formulations of microwave-exfoliated graphite oxide (MEGO) based thermoplastic polyurethane (TPU) nanocomposites were successfully prepared via melt blending followed by injection molding. The spectroscopic study indicated that a strong interfacial interaction had developed between the MEGO and the TPU matrix. The microscopic observations showed that the MEGO layers were homogeneously dispersed throughout the TPU matrix. Thermal analysis indicated that the glass transition temperatures (Tg) of the nanocomposites increased with increasing MEGO content and their thermal stability improved in comparison with pure TPU matrix. The mechanical properties of nanocomposites improved substantially by the incorporation of MEGO into the TPU matrix. Electrical conductivity test indicated that a conductivity of 10−4 S cm−1 was achieved in the nanocomposite containing only 4.0 wt.% of MEGO.  相似文献   

20.
Solution styrene butadiene rubber (S-SBR) composites reinforced with graphene nanoplatelets (GnPs), expanded graphite (EG), and multiwalled carbon nanotubes (MWCNTs) were prepared and the electrical and various mechanical properties were compared to understand the specific dispersion and reinforcement behaviours of these nanostructured fillers. The electrical resistivity of the rubber composite gradually decreased with the increase of filler amount in the composite. The electrical percolation behaviour was found to be started at 15 phr (parts per hundred rubber) for GnP and 20 phr for EG filled systems, whereas a sharp drop was found at 5 phr for MWCNT based composites. At a particular filler loading, dynamic mechanical analysis and tensile test showed a significant improvement of the mechanical properties of the composites comprised of MWCNT followed by GnP and then EG. The high aspect ratio of MWCNT enabled to form a network at low filler loading and, consequently, a good reinforcement effect was observed. To investigate the effect of hybrid fillers, MWCNT (up to 5 phr) were added in a selected composition of EG based compounds. The formation of a mixed filler network showed a synergistic effect on the improvement of electrical as well as various mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号