首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
介绍了中国石油化工股份有限公司金陵分公司3.5 Mt/a重油催化裂化装置处理喷气燃料组分油的工业实践。通过在原加氢柴油至催化回炼的管线上增设管线,将罐区喷气燃料组分油输送至催化裂化装置提升管底部LTAG(催化裂化轻循环油生产高辛烷值汽油或轻质芳烃)回炼油喷嘴,以实现催化裂化装置掺炼喷气燃料组分油。结果表明:在确保重油催化裂化装置运行平稳的情况下,有效增产了汽油及丙烯等高价值组分,喷气燃料组分油的转化率达到89.44%,丙烯收率8.26%,汽油收率49.5%,液化石油气收率(不含丙烯)17.64%,装置丙烯、液态烃、汽油收率显著提高。除此之外,还考察了喷气燃料组分油处理量在20~40 t/h时重油催化裂化装置总体产品分布的变化,综合产品分布达到最佳。在喷气燃料价格较低时,利用催化裂化装置处理喷气燃料组分油取得较好的经济效益。  相似文献   

2.
分析了催化裂化装置通过LTAG喷嘴回炼加氢催化裂化柴油(LCO)、柴油加氢转化(RLG)柴油和喷气燃料馏分(常一线油)在改善炼油厂产品结构、降低柴汽比方面的效果。结果表明:催化裂化装置回炼加氢LCO时,在增产车用柴油的同时提高了汽油收率;催化裂化装置LTAG工艺和RLG工艺相结合,利用LTAG喷嘴回炼RLG柴油,可大幅降低全厂柴油产量,降低柴汽比,提高轻质油收率和经济效益;回炼喷气燃料馏分时,使其转化成汽油、液化气等高附加值产品,改善了产品结构,优化了产品分布,并解决了喷气燃料馏分需求量降低时的出路问题。  相似文献   

3.
两段提升管催化裂化中第二段提升管常用来回炼汽油和回炼重油,本文采用小型提升管装置进行实验,对比考察了回炼汽油在不同进料位置的产物分布和汽油质量情况,结果表明回炼汽油在上喷嘴和下喷嘴进料时,汽油中烯烃都有明显降低,且烯烃降低效果基本相同。而回炼汽油在下喷嘴进料时,汽油损失较大,轻油和液化气收率低;回炼汽油和重油同时在下喷嘴进料时,重油和焦炭产率较高;当上喷嘴进料回炼汽油、下喷嘴进料回炼重油时,产物分布相对最好。  相似文献   

4.
采用多产丙烯、异丁烯和低硫燃料油组分技术对中国石化青岛石油化工有限责任公司140万t/a重油催化裂化装置进行了改造。改造后,将汽油加氢装置中的汽油切割塔塔顶轻汽油替代改造前的柴油送入提升管回炼。结果表明:在轻汽油回炼比为4.29%的情况下,液化气和干气收率分别增加2.18,0.31个百分点;液化气中丙烯体积分数较回炼前提高0.43个百分点;装置回炼轻汽油增产丙烯约1 t/h,获得的综合经济效益约12.8万元/d。  相似文献   

5.
多产汽油的催化裂化催化剂LPC-70含有富B酸多级孔基质材料APM-7,可有效提高重油转化能力,并提高汽油收率和液化气中的丙烯浓度。LPC-70催化剂在兰州石化3.0 Mt/a重油催化裂化装置应用结果表明,与空白标定相比,在原料劣质化和催化剂单耗降低0.2 kg/t的条件下,油浆产率下降0.71百分点,汽油收率增加2.53百分点,柴汽质量比由0.46下降至0.39,液化气中丙烯体积分数提高6.10百分点。  相似文献   

6.
催化裂化多产液化气和柴油技术在广石化的工业应用   总被引:22,自引:6,他引:16  
石油化工科学研究院开发的催化裂化多产液化气和柴油技术(MGD)在中国石油化工股份有限公司广州分公司(广石化)重油催化裂化装置的工业应用和标定结果表明:使用MGD技术可显著增加液化气和柴油的产率,前者可增加4.06个百分点,后者可增加4.54个百分点,同时可大幅度降低汽油中的烯烃含量,从37.0%降至23.2%。汽油回炼是MGD技术增产液化气和降低汽油烯烃的主要原因,分层进料,即提升管蜡油喷嘴和重质油喷嘴同时使用,是MGD技术增产柴油的主要原因。  相似文献   

7.
对重油选择性裂解(MCP)工艺中烯烃选择性转化区的优化进行研究,并在中国石化扬州石化有限责任公司MCP装置上进行工业应用试验。结果表明:当回炼油在烯烃选择性转化区中轻汽油进料之前先与催化剂接触转化,回炼油回炼量为0.3 t/h时,MCP装置液化气中的丙烯质量分数增加2.34百分点,丙烯产率增加0.84百分点;通过将回炼油先与高温新鲜催化剂选择性接触反应并形成积炭,可以强化择形活性分子筛对轻汽油的选择性转化,实现增产丙烯的目的。  相似文献   

8.
在重油催化裂化装置上生产低烯烃汽油   总被引:10,自引:1,他引:9  
介绍中国石化股份有限公司北海分公司在重油催化裂化装置上进行的MGD技术工业试验和生产低烯烃汽油的情况。生产结果表明 :采用RGD C催化剂、MGD技术和操作条件优化相结合 ,诸如汽油回炼 ,保持较高平衡催化剂活性及降低反应温度等 ,可以使常压渣油为原料的重油催化裂化汽油烯烃体积分数从 5 4 .3%降至 2 8.0 % ,RON变化不大 ,MON明显上升 ,抗爆指数增加。液化气产率提高 3.98个百分点 ,柴油产率提高 0 .4 3个百分点 ,汽油产率降低 2 .15个百分点 ,油浆产率降低 3.0 2个百分点。  相似文献   

9.
在延迟焦化中型装置上,采用相同的原料,在焦炭塔塔顶操作压力、加热炉注汽量、循环比等工艺条件基本相同的情况下,对催化裂化油浆直接掺炼到减压渣油中(常规工艺)与催化裂化油浆和减压渣油分别加热后再混合(新工艺)两种进料方式进行试验研究,对两种进料方式下的产品分布及产品性质进行对比。结果表明:与常规工艺相比,新工艺可提高焦炭塔内重油的反应深度,具有提高液体产品收率及降低焦炭产率的技术优势;采用新工艺时气体产率增加了0.16百分点,汽油馏分和柴油馏分收率分别增加了0.23和0.56百分点,焦化蜡油收率降低了0.35百分点,焦炭产率降低了0.64百分点,从而使轻油收率增加了0.79百分点,液体产品收率增加了0.44百分点;在产品性质方面,气体、汽油馏分、柴油馏分和焦炭的性质变化不大,而焦化蜡油的性质则有所改善。  相似文献   

10.
在中国石油宁夏石化公司260万t/a重油催化裂化装置中,以常压渣油与回炼催化裂化柴油为原料,采用MLC-500 NH型高活性降烯烃催化剂,生产出低烯烃高辛烷值汽油。结果表明:催化裂化柴油回炼后,产物中轻柴油和液化气收率分别降低了2.04,0.15个百分点,汽油、干气收率和转化率依次提高了1.32,0.11,1.29个百分点;汽油烯烃体积分数降低,芳烃体积分数增加,研究法辛烷值提高了0.3个单位;催化剂单耗由回炼前的1.00 kg/t降至回炼后的0.94 kg/t。  相似文献   

11.
中国石化洛阳分公司在SINOALKY硫酸法烷基化装置中创造性地在醚后碳四原料中少量掺炼醚前碳四、气分碳五和重整无硫液化气进行工业实践,累积了掺炼各种物料期间装置操作参数变化以及对装置酸耗影响的经验。结果表明:在装置掺炼上述各种物料期间,产品质量全部合格,烷基化油的研究法辛烷值为96.1~96.8,终馏点小于194.2 ℃,蒸气压为42.8~49.5 kPa;掺炼醚前碳四时,烷基化油收率提高7.40百分点;掺炼气分碳五时,烷基化油收率提高2.46百分点。该工业实践拓宽了SINOALKY硫酸法烷基化技术的原料适用范围,为工艺包的改进和炼油厂SINOALKY硫酸法烷基化装置的生产优化提供了新思路。  相似文献   

12.
针对企业连续重整装置扩能改造的需求,高密度催化剂为现有装置扩能改造提供了新的技术方案。中国石化九江分公司结合连续重整装置改造开展了国产连续重整高密度催化剂PS-Ⅷ的工业应用试验。结果表明:在重整进料量为163.3 t/h、加权平均入口温度(WAIT)为519 ℃、氢油摩尔比为2.24和质量空速为1.46 h-1的操作条件下,C5+产品收率(w)为88.4%,C5+产品研究法辛烷值(RON)为101.8,芳烃产率(w)为69.7%,纯氢产率(w)为3.85%,催化剂损耗量较低,积炭速率与常规催化剂相当;在达到相同C5+产品辛烷值的情况下,使用PS-Ⅷ时较使用PS-Ⅵ时的反应温度低4 ℃,C5+产品收率(w)高0.5百分点,芳烃产率(w)高0.4百分点,纯氢产量高7.8 m3/t,液化气产率(w)低0.3百分点。在原料油轻组分含量较高、芳构化指数低于设计值的情况下,PS-Ⅷ催化剂表现出良好的反应活性和选择性。PS-Ⅷ高密度催化剂工业应用试验的成功,对实现国产连续重整催化剂的系列化具有重要意义。  相似文献   

13.
以大庆石化公司混合碳四为原料,在500 mL碳四芳构化模试装置上进行了碳四烃芳构化产物综合利用的研究。研究结果表明,在反应温度360~400 ℃、反应压力2.0 MPa、氢油体积比50:1、体积空速1.0 h-1的条件下,采用纳米分子筛为基础研制的碳四芳构化催化剂具有较高的活性,产品结构合理,芳构化产物中的C3~C4馏分可以作为乙烯裂解原料的一个补充,C5~C10馏分可以作为高辛烷值汽油调合组分。  相似文献   

14.
采用新开发的催化剂表面涂覆制备技术,制备了可用于富氧再生条件催化裂化装置的抗钒催化剂,并在中国石化金陵分公司3号催化裂化装置上进行了工业应用。应用结果表明:该催化剂具有良好的抗钒能力,在平衡剂的钒质量分数超过 6 000 ug/g时表现出优异的催化性能;在降低剂耗的情况下,平衡剂微反活性仍提高了3以上,而且表现出优良的活性稳定性;在该催化剂作用下,催化裂化的液化气+汽油收率增加了3.54百分点,柴油收率减少1.67百分点,丙烯产率(对新鲜原料)增加0.69百分点,干气中氢气/甲烷体积比降低0.23。  相似文献   

15.
MGD technology effectively integrates selective cracking reaction of olefin fraction in FCC naphtha with the stepwise cracking of light and heavy feedstocks under different severity conditions for improving FCC gasoline quality and adjusting the product slate of FCC unit. The first commercial application of MGD technology in a 1.30 Mt/a FCCU using VGO as feedstock at Tianjin Petrochemical Company showed that the olefin content in FCC naphtha decreased‘around 10 percentage points (by volume) with slight increase in octane number. The yields of LPG and LCO increased around 4.63 and 2.04 percentage points respectively, and the ratio between LCO to naphtha increased by 0.21. Due to capacity constraints of FCCU, the capacity decreased slightly under the MGD operation mode.  相似文献   

16.
在中型提升管催化裂化装置上,选用常规重油裂化催化剂VRCC,对不同加氢深度的重质油在相同试验条件下裂化反应性能和再生烟气SO2含量进行考察。结果表明:随着原料加氢深度的增加,再生烟气中SO2浓度由轻度加氢原料时的526 mg/m3降低到深度加氢原料时的232 mg/m3;与轻度加氢原料裂化产物相比,中度加氢原料裂化产物中液化气收率增加1.40百分点,汽油收率增加0.89百分点,油浆产率减少2.05百分点,总液体(液化气+汽油+柴油)收率增加1.54百分点,产物分布得到优化。兼顾原料加氢难度和对再生烟气SOx排放的影响幅度,选择对催化裂化原料中度加氢既可以减少加氢工艺的成本,又可以满足催化裂化对产物分布优化和降低再生烟气SOx排放的双重要求。  相似文献   

17.
 为了降低催化裂化汽油的烯烃含量,榆林炼油厂于2009年9月对联合二车间600 kt/a催化裂化装置进行MIP技术改造。MIP工艺技术改造后,装置具有较强的重油裂化能力和适宜的氢转移反应促进能力。在原料性质及组成基本相当的情况下,装置汽油收率和柴油收率较改造前有所提高,液化气和油浆收率下降,同时干气和焦炭的产率小幅降低,总液体收率上升,产品分布良好。MIP工艺技术改造后装置总能耗下降182.11 MJ/t。  相似文献   

18.
为探寻轧钢油泥与聚丙烯高质化利用的途径,采用热重分析仪和管式热解炉,研究了轧钢油泥与聚丙烯不同混合比例下的共热解行为及热解产物分布特性。结果表明:轧钢油泥与聚丙烯共热解过程中存在协同交互作用。随着聚丙烯掺混质量分数的增大,混合样品的活化能先减小后增大,但远低于两者线性叠加得到的理论计算值。此外,随着聚丙烯掺混质量分数的增大,一方面会减少气相和固相产物产率,增大液相产物产率;另一方面也会降低液相产物中重质组分和含氧组分的相对含量。当聚丙烯掺混质量分数为0.75时,相比于理论计算值,液相产物中C20~C30组分和含氧类组分相对含量实验值分别降低了9.68百分点和8.60百分点;同时聚丙烯的掺混促进了轧钢油泥中羰基的裂解,使CO和CO2产率实验值分别提高了7.18和4.86 mL/g。  相似文献   

19.
通过调变催化剂中V的价态,借助X射线光电子能谱(XPS)分析、小型固定床和中型提升管装置实验,开发了以自制催化剂c为基础、再生斜管部分增加H2还原预处理器的催化裂化(FCC)新工艺。催化剂经H2还原预处理后,其所含V由5价态降为4价、3价,甚至更低价态,在催化反应中可与氧化态硫接触反应,从而降低FCC汽油硫含量。经H2还原预处理的自制催化剂c(V质量分数0.6%)的催化脱硫效果显著,适宜的H2预还原温度为550℃,预还原时间为20 min。采用自制催化剂c,在H2预还原温度650℃、还原时间20 min、H2流量40 L/h、反应温度500℃、再生温度690℃、剂/油质量比6的条件下,新工艺的FCC汽油S质量浓度由880 μg/mL降至515 μg/mL。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号