首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
骆欣  刘瑞森  徐东耀  叶锦莎 《矿产综合利用》2022,242(3):137-142, 187
以热改性粉煤灰作为吸附剂,采用固定床吸附装置,探究了床层高度、流量、初始浓度等因素对Cu2+动态吸附曲线的影响。在此基础上进行了动态吸附模型的研究,分别研究了Thomas、Yoon-Nelson和Adams-Bohart三种吸附模型。同时也探讨了双组分污染物体系中MFA对Cu2+的动态吸附效果。结果表明,Cu2+的穿透时间随初始离子浓度和流量的增加而缩短,随床层高度的增加而延长。MFA吸附Cu2+的动态行为符合Thomas和Yoon-Nelson模型。降低床层高度、增加初始浓度和流量可以提高Cu2+的吸附速率。根据MFA吸附Cu2+前后的表征,吸附主要机理包括含氧官能团与Cu2+的络合和Na+等阳离子与Cu2+的离子交换。在双组分污染物体系中,溶液中的Zn2+、Pb2+对MFA的Cu2+吸附均产生抑制作用,其影响大小为Pb2+>Zn2+。  相似文献   

2.
通过对粉煤灰改性,研究改性粉煤灰对磷矿浮选药剂十二烷基硫酸钠的吸附性能,为磷矿浮选废水中有机药剂的去除提供依据。采用X射线衍射仪分析粉煤灰焙烧前后的成分,扫描电镜观察改性前后表面形貌,粉煤灰在350℃焙烧后形成更多的孔道。改性后的粉煤灰吸附十二烷基硫酸钠,进行用量、pH、温度和时间的吸附试验。采用准一级动力学模型、准二级动力学模型、Bangham孔道扩散模型和Weber and Morris(W-M)动力学模型进行吸附动力学分析,可知该吸附符合准二级动力学和W-M动力学模型。采用Langmuir和Freundlich等温模型对吸附等温线进行分析,可知粉煤灰表面具有不均匀性,该吸附属于优惠吸附。  相似文献   

3.
高玉红  申丽英  辛景 《煤炭技术》2015,34(6):265-267
分别采用碱改性、酸改性、高温改性、超声波改性和助溶剂改性5种方法对粉煤灰进行改性处理,研究改性后的粉煤灰对含铅废水的吸附效果及最佳吸附条件。  相似文献   

4.
改性粉煤灰吸附处理含油废水实验研究   总被引:2,自引:0,他引:2  
通过正交实验研究了改性粉煤灰吸附处理含油废水的效果。结果表明:改性粉煤灰用量为100g/L、吸附平衡时间100m in、废水pH=10、吸附温度为20℃的条件下,废水中油去除率在96%以上,达到国家含油废水一级排放标准。改性粉煤灰对油的吸附符合Freund lich模型。  相似文献   

5.
以不同浓度的硝酸对活性炭进行改性,用BET氮吸附法和Boehm滴定法对改性前后的活性炭进行了表征,并比较了改性和未改性活性炭对模拟含铜废水的处理效果。结果表明:经过硝酸氧化改性的活性炭比表面积有所增大,含氧官能团总量明显增加,因而对水中Cu2+的去除率大为提高;在常温、自然pH、活性炭用量为5 g/L、吸附时间为180 min的条件下处理浓度为10 mg/L的模拟含铜废水,经浓度为10%的硝酸改性的活性炭对Cu2+的去除率在70%以上,经浓度为70%的硝酸改性的活性炭对Cu2+的去除率接近90%;Langmuir等温吸附模型可较好地描述硝酸改性活性炭对Cu2+的等温吸附行为。  相似文献   

6.
改性粉煤灰吸附处理含铜废水研究   总被引:1,自引:0,他引:1  
采用高分子絮凝剂聚二甲基二烯丙基氯化铵(PDMDAAC)对粉煤灰进行改性,通过正交试验研究改性粉煤灰处理含铜废水。实验结果表明:改性粉煤灰用量为3.0g,吸附平衡时间90 min,pH=10时,铜去除率可达97%。该工艺简单,以废治废,成本低廉,具有良好的应用前景。  相似文献   

7.
改性粉煤灰对亚甲蓝的吸附及再生性能研究   总被引:4,自引:0,他引:4  
用浓度为2.0mol/L的盐酸,在常温、酸灰质量比为1∶3的条件下对粉煤灰进行改性,改性后作为实验废水中亚甲蓝的吸附剂。当改性粉煤灰用量为50g/L、温度为30℃、pH值为8时,亚甲蓝的去除率可达98%左右。用0.5mol/L的HCl对吸附后的粉煤灰进行再生实验,效果良好。再生粉煤灰对亚甲蓝的去除率仍能达到96%左右。  相似文献   

8.
为提升蛇纹石尾渣(ALS)对重金属污染物Cu2+的去除效果,实现废水中Cu2+的高效去除,开展了蛇纹石尾渣碱浸改性研究,系统探究改性后蛇纹石尾渣吸附材料(AALS)对废水中Cu2+去除性能的影响。结果表明,当蛇纹石尾渣与氢氧化钠质量比为1∶0.12、改性温度为30.0℃、改性时间为90.0min时,改性效果最佳。利用BET、SEM、XRD和FTIR等分析方法考察了碱浸改性蛇纹石尾渣的改性机理。结果表明,碱浸改性致使蛇纹石尾渣的比表面积从22.62m2/g提高到67.19m2/g,碱可以侵蚀蛇纹石浸渣的结构,导致其暴露出更多Si—O—Si、Si—O官能团,增加了颗粒表面的Cu2+吸附位点。AALS对溶液中Cu2+的最佳吸附条件为AALS用量为0.15g、吸附时间为15min、溶液p H值为5.39,此时其对50.0m L浓度为125.0mg/LCu2+溶液中Cu2+的吸附量及Cu2+...  相似文献   

9.
采用硫酸和高分子絮凝剂聚二甲基二烯丙基氯化铵(PDMDAAC)对粉煤灰进行改性,通过正交实验研究改性粉煤灰吸附处理造纸废水.结果表明:水灰比为4:1,吸附温度为25℃,吸附时间为50min,pH值=12的条件下,改性粉煤灰对造纸废水中CODcrBOD5、悬浮物的去除率分别可达84%、80.9%和99%.该方法具有处理效果好,操作简单等优点.  相似文献   

10.
改性粉煤灰吸附处理含砷废水研究   总被引:8,自引:2,他引:6  
采用高分子絮凝剂聚二甲基二烯丙基氯化铵(PDMDAAC)对粉煤灰进行改性,采用正交实验法研究改性粉煤灰处理含砷废水。实验结果表明:改性粉煤灰用量为2.4g,吸附平衡时间60 min,反应温度为25℃,砷去除率可达90.3%。该工艺简单,以废治废,成本低廉,具有良好的应用前景。  相似文献   

11.
含Cr(VI)废水对环境危害巨大,对其处理技术的研究也越来越受到关注.本文对改性粉煤灰吸附处理模拟含铬废水进行了试验研究,并探讨了吸附时间、改性粉煤灰投加量、Cr(VI)初始浓度、pH值和温度等因素对除铬效果的影响.结果表明,改性粉煤灰能有效吸附含Cr(VI)废水,其吸附过程符合Langmuir模型.  相似文献   

12.
研究了粉煤基沸石对水溶液中重金属铜离子的吸附特性。结果表明,在温度35℃,pH值在3~5,液固比200∶1,初始浓度800 mg/L条件下,粉煤基沸石对Cu~(2+)基本达到吸附饱和,饱和吸附量122 mg/g;Langmuir模型和Freundlich模型可描述粉煤基沸石对Cu~(2+)的吸附特性;粉煤基沸石对铜离子的吸附行为是氢氧化铜沉淀和离子交换吸附共同作用的结果。  相似文献   

13.
通过对粉煤灰进行改性处理来吸附舍磷废水中的磷,取得了良好的吸附效果.探讨了吸附接触时间、改性粉煤灰投加量、磷初始浓度、pH值和温度等因素对除磷效果的影响.结果表明,对于50mg/L的含磷废水,在室温,pH值4~10范围内.当水灰比为100:3时.吸附20min后磷的去除率可迭99%以上,净化后的污水中磷含量达国家一级排放标准的要求.吸附等温线拟合结果表明,该吸附过程可用Laagrauir吸附等温式来描述,吸附过程以化学吸附为主.  相似文献   

14.
易龙生  刘苗  吴倩 《矿冶工程》2020,40(6):103-107
以粉煤灰制备的地聚物泡沫材料为原料,通过浸渍-焙烧的方法制备镧改性泡沫材料,研究了镧改性泡沫材料对含磷废水的吸附效果。结果表明,镧改性实验的最佳条件为:氯化镧溶液pH=9、镧离子浓度0.3%、固液比1∶25、焙烧温度300℃、焙烧时间2 h;吸附实验的最佳条件为:镧改性材料用量2 g/L、废水pH=7、含磷废水浓度5 mg/L、吸附时间2 h,此条件下镧改性泡沫材料对磷的去除率达90.3%。机理分析结果表明,镧只存在于泡沫材料的表面,并未进入泡沫材料的硅氧四面体骨架中;吸附过程中,磷只是与泡沫材料表面的镧发生了化学吸附,生成的磷酸镧络合物并未进入泡沫材料的四面体骨架中。  相似文献   

15.
石灰-粉煤灰(二灰)结合料易干缩、早期强度低,堆存的固硫灰(堆存灰)含有可激发火山灰活性的硫酸盐且膨胀物质少,可用于二灰路面基层材料.研究了堆存灰对二灰结合料性能的影响,测试了堆存灰改性二灰稳定碎石的路用性能.结果表明,适量掺入堆存灰可改善二灰结合料的干缩性能;堆存灰的掺入能够提高二灰结合料的早期强度,取代50%粉煤灰或内掺50%时,二灰结合料强度最佳;堆存灰改性二灰稳定碎石抗干缩性能和强度均大于传统二灰稳定碎石.  相似文献   

16.
本文用改性粉煤灰处理模拟含铬废水。实验结果表明:废水pH值在10以上,改性粉煤灰用量为20g/L;吸附平衡时间60min;反应温度为35~40℃,去除率可达98%以上。改性粉煤灰对Cr(VI)的吸附符合Langmuir模型。该方法具有处理效果好,操作简单,运行费用低等优点。  相似文献   

17.
采用批吸附试验探究NaOH改性粉煤灰对含Pb2+废水吸附特性。结果表明,NaOH改性粉煤灰对Pb2+具有较强的吸附效果,在固液比为0.9 g/L、温度为25℃、Pb2+溶液质量浓度为100 mg/L条件下,吸附反应在30 min基本达到平衡,Pb2+去除率为96.02%,吸附容量为106.69 mg/g。由吸附等温线模型得出吸附主要在单分子层表面进行。吸附动力学特征表明吸附主要限速步骤为化学吸附。吸附反应存在物理吸附和化学吸附。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号