首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SR 141716A belongs to a new class of compounds (diarylpyrazole) that inhibits brain cannabinoid receptors (CB1) in vitro and in vivo. The present study showed that [3H]-SR 141716A binds with high affinity (Kd=0.61 +/- 0.06 nM) to a homogenous population of binding sites (Bmax=0.72 +/- 0.05 pmol/mg of protein) in rate whole brain (minus cerebellum) synaptosomes. This specific binding was displaced by known cannabinoid receptor ligands with the following rank order of potency SR 141716A > CP 55,940 > WIN 55212-2 = delta9-THC > anandamide. Apart from anandamide, all these compounds were found to interact competitively with the binding sites labeled by [3H]-SR 141716A. On the other hand, agents lacking affinity for cannabinoid receptors were unable to displace [3H]-SR 141716A from its binding sites (IC50 > 10 microM). In addition, the binding of [3H]-SR 141716A was insensitive to guanyl nucleotides. Regional rat brain distribution of CB1 cannabinoid receptors detected by [3H]-SR 141716A saturation binding and autoradiographic studies, showed that this distribution was very similar to that found for [3H]-CP 55,940. In vivo, the [3H]-SR 141716A binding was displaced by SR 141716A with ED50 values of 0.39 +/- 0.07 and 1.43 +/- 0.29 mg/kg following intraperitoneal and oral administration, respectively. Finally, the [3H]-SR 141716A binding sites remained significantly occupied for at least 12 hr following oral administration of 3 mg/kg SR 141716A. Taken together, these results suggest that SR 141716A in its tritiated form is a useful research tool for labeling brain cannabinoid receptors (CB1) in vitro and in vivo.  相似文献   

2.
The binding of [123I]AM251 (a radioiodinated analog of the cannabinoid CB1 receptor antagonist SR141716A) was compared to that of [3H]CP 55,940 in mouse and rat brain preparations. Scatchard analysis of the binding of [123I]AM251 and [3H]CP 55,940 to membranes prepared from mouse cerebellum, striatum and hippocampus yielded similar Bmax values (15-41 pmol/g wet wt tissue). Kd values were lower for [123I]AM251 (0.23-0.62 nM) than for [3H]CP 55,940 (1.3-4 nM). CP 55,940 and SR141716A increased dissociation of [123I]AM251 from binding sites in mouse cerebellar homogenates to a similar extent. The structurally dissimilar cannabinoid receptor ligands THC, methanandamide, WIN 55, 212-2, CP 55,940 and SR141716A were each able to fully compete with binding of both [123I]AM251 and [3H]CP 55,940 in mouse cerebellum. In vitro autoradiography demonstrated that the distribution of binding sites for [123I]AM251 in rat brain was very similar to published distributions of binding sites for [3H]CP 55,940. Together, these observations suggest that AM251 binds to the same site (the cannabinoid CB1 receptor) in rodent brains as CP 55,940. However, the binding site domains which interact with AM251 and CP 55,940 may not be identical, since IC50 values for cannabinoid receptor ligands depended on whether [123I]AM251 or [3H]CP 55,940 was used as radioligand.  相似文献   

3.
We evaluated delta-9 tetrahydrocannabinol (Delta9-THC), delta-8 tetrahydrocannabinol (Delta8-THC), CP55,940 (CP55), 1-deoxy-11-hydroxy-Delta8-THC-dimethylheptyl (deoxy-HU210, a CB2-selective cannabinoid that also binds the CB1 receptor) and the endogenous cannabinoid anandamide (ANA) via i.c.v. and/or intrathecal (i.t.) routes of administration, alone and in combination with SR141716A (SR), a CB1 antagonist, using the tail-flick test. Our studies were performed in order better to characterize potential diversity in interactions of the cannabinoids with the cannabinoid (CB1) receptor. When SR was administered i.c.v. or i.p. before Delta9-THC, Delta8-THC or CP55 (i.c.v. or i.t.), SR was a potent antagonist and the blockade was complete (AD50 相似文献   

4.
delta 8-Tetrahydrocannabinol (delta 8-THC) is a naturally occurring cannabinoid with a characteristic pharmacological profile of in vivo effects. Previous studies have shown that modification of the structure of delta 8-THC by inclusion of a nitrogen-containing functional group alters this profile and may alkylate the cannabinoid receptor, similar to the manner in which beta-funaltrexamine (beta-FNA) alkylates the micro-opioid receptor. Two novel analogs of delta 8-THC were synthesized: a nitrogen mustard analog with a dimethylheptyl side chain (NM-delta 8-THC) and a cyano analog with a dimethylpentyl side chain (CY-delta 8-THC). Both analogs showed high affinity for brain cannabinoid receptors and when administered acutely, produced characteristic delta 9-THC-like effects in mice, including locomotor suppression, hypothermia, antinociception and catalepsy. CY-delta 8-THC shared discriminative stimulus effects with CP 55,940; for NM-delta 8-THC, these effects also occurred, but were delayed. Although both compounds attenuated the effects of delta 9-THC in the mouse behavioral tests, evaluation of potential antagonist effects of these compounds was complicated by the fact that two injections of delta 9-THC produced similar results, suggesting that acute tolerance or desensitization might account for the observations. NM-delta 8-THC, but not CY-delta 8-THC, attenuated the discriminative stimulus effects of CP 55,940 in rats several days following injection. Hence, addition of a nitrogen-containing functional group to a traditional cannabinoid structure does not eliminate agonist effects and may produce delayed attenuation of cannabinoid-induced pharmacological effects.  相似文献   

5.
Intrathecal administration of delta 9-tetrahydrocannabinol (delta 9-THC) but not the cannabinoid agonist CP55,940 enhances the antinociception produced by morphine. In addition, CP55,940- and delta 9-THC-induced antinociception is blocked by the kappa opioid antagonist norbinaltorphimine, and both cannabinoids are cross-tolerant to kappa agonists but do not act directly at the kappa receptor. Previous work in our laboratory has implicated dynorphins in the antinociceptive effects of delta 9-THC and its enhancement of morphine-induced antinociception. The goal of the present study was to evaluate the role of dynorphins in the antinociceptive effects of CP55,940 at the spinal level. Pretreatment of mice with antisera to dynorphin A(1-17), dynorphin A(1-8) or alpha-neoendorphin, all of which have been shown to retain specificity for blockade of their respective peptide in vivo, blocked the antinociceptive effects of delta 9-THC but not CP55,940. Dynorphin B produced antinociceptive effects on intrathecal administration to mice. Like CP55,940, dynorphin B failed to enhance the antinociceptive effects of morphine, whereas dynorphin A(1-17) and alpha-neoendorphin enhanced the antinociceptive effects of morphine. Using spinal catheterization of the rat, CP55,940 administration was shown to produce a significant release of dynorphin B concurrent with the production of antinociception. Our data suggest that CP55,940 induces a release of spinal dynorphin B that contributes at least in part to its antinociceptive effects in the spinal cord.  相似文献   

6.
We have investigated the adaptive changes of the human central cannabinoid receptor (CB1) stably expressed in Chinese hamster ovary cells (CHO-CB1), after agonist (CP 55,940) or selective CB1 inverse agonist (SR 141716) treatment. CB1 receptor density and affinity constant as measured by binding assays with both tritiated ligands remained essentially unchanged after varying period exposure of CHO-CB1 cells (from 30 min to 72 hr) to saturating concentrations of CP 55,940 or SR 141716. However, using a C-myc-tagged version of the CB1 receptor, FACS analysis and confocal microscopy studies on CB1 expression indicated that the agonist promoted a disappearance of cell surface receptor although inverse agonist increased its cell surface density. Taken together these results suggest that 1) agonist induces internalization of the receptor into a cellular compartment that would be still accessible to both the hydrophobic ligands CP 55,940 or SR 141716; 2) inverse-agonist promotes externalization of the receptor from an intracellular preexisting pool to the cell surface. In parallel, we also investigated the associated effects of CP 55,940 and SR 141716 on CB1 receptor-coupled second messengers. We showed that preexposure of cells to CP 55,940 induced a rapid desensitization of the CB1 to the agonist response. The ability of CP 55,940 to inhibit the forskolin-stimulated adenylyl cyclase and to activate the mitogen-activated protein kinase activity was dramatically reduced. By striking contrast, SR 141716 pretreatment of CHO-CB1 cells not only had no significant effect on the potency of CP 55,940 to inhibit the forskolin-stimulated adenylyl cyclase but also induced a significant enhancement of the CP 55,940 ability to stimulate the mitogen-activated protein kinase activity. These results suggest that the modulation of the number of cell surface receptor could lead to functional desensitization or sensitization of the CB1 receptors.  相似文献   

7.
Anandamide (N-arachidonoylethanolamine) is an endogenous ligand for both the brain-type (CB1-R) and spleen-type (CB2-R) cannabinoid receptors. This investigation demonstrates that the periimplantation mouse uterus contains the highest levels of anandamide (142-1345 pmol/micromol lipid P; 1-7 microg/g wet weight) yet discovered in a mammalian tissue. The levels fluctuate with the state of pregnancy; down-regulation of anandamide levels is associated with uterine receptivity, while up-regulation is correlated with uterine refractoriness to embryo implantation. Anandamide levels are highest during the nonreceptive phase in the pseudopregnant uterus and in the interimplantation sites, and lowest at the site of embryo implantation. The lower levels of uterine anandamide at the implantation sites may be a mechanism by which implanting embryos protect themselves from the detrimental effects of this endogenous ligand. We also observed a reduced rate of zona-hatching of blastocysts in vitro in the presence of anandamide, and inhibition of implantation by systemic administration of a synthetic cannabinoid agonist CP 55,940. These adverse effects were reversed by SR141716A, a specific CB1-R antagonist. Taken together, the results suggest that an aberrant synthesis of anandamide and/or expression of the cannabinoid receptors in the uterus/embryo may account for early pregnancy failure or female infertility.  相似文献   

8.
Anandamide, an endogenous cannabinoid ligand, binds to CB1 cannabinoid receptors in the brain and mimics the neurobehavioural actions of marijuana. Cannabinoids and anandamide also elicit hypotension mediated by peripheral CB1 receptors. Here we report that a selective CB1 receptor antagonist, SR141716A, elicits an increase in blood pressure in rats subjected to haemorrhagic shock, whereas similar treatment of normotensive rats or intracerebroventricular administration of the antagonist during shock do not affect blood pressure. Blood from haemorrhaged rats causes hypotension in normal rats, which can be prevented by SR141716A but not by inhibition of nitric oxide synthase in the recipient. Macrophages and platelets from haemorrhaged rats elicit CB1 receptor-mediated hypotension in normotensive recipients, and incorporate arachidonic acid or ethanolamine into a product that co-elutes with anandamide on reverse-phase high-performance liquid chromatography. Also, macrophages from control rats stimulated with ionomycin or bacterial phospholipase D produce anandamide, as identified by gas chromatography and mass spectrometry. These findings indicate that activation of peripheral CB1 cannabinoid receptors contributes to haemorrhagic hypotension, and anandamide produced by macrophages may be a mediator of this effect.  相似文献   

9.
The purpose of this study was to investigate whether anandamide induces cannabimimetic responses, mainly mobilization of arachidonic acid, in primary cultures of rat brain cortical astrocytes. Confluent monolayer cultures of astrocytes, prelabeled with [3H]arachidonic acid, were incubated with anandamide or delta9-tetrahydrocannabinol (delta9-THC) in the presence or absence of thimerosal, a fatty acid acyl CoA transferase inhibitor and phenylmethylsulfonyl fluoride, an amidohydrolase inhibitor. Anandamide and delta9-THC induced a time- and concentration-dependent release of arachidonic acid in the presence, but not in the absence, of thimerosal. Anandamide- and delta9-THC-stimulated arachidonic acid release was pertussis toxin-sensitive, indicating a receptor/G-protein involvement. A novel and selective cannabinoid receptor antagonist, SR141716A [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4- methyl-1H-pyrazole-3-carboximide hydrochloride], blocked the arachidonic acid release, suggesting a cannabinoid receptor-mediated pathway. In astrocytes, the magnitude of anandamide-induced arachidonic acid release was equal to that released by equimolar concentrations of delta9-THC. Furthermore, direct assay of amidohydrolase activity indicated that degradation of anandamide into arachidonic acid and ethanolamine was negligible in cortical astrocytes. Our results suggest that anandamide stimulates receptor-mediated release of arachidonic acid, and the receptor may be the cannabinoid receptor. Astrocytes, containing a cannabinoid receptor and lower or negligible amidohydrolase activity, may be an important brain cell model in which to study the cannabimimetic effects of anandamide at a cellular and molecular level.  相似文献   

10.
This study characterized the antinociceptive, respiratory and heart rate effects of the cannabinoid receptor agonists Delta-9-tetrahydrocannabinol (Delta-9-THC) and WIN 55212 ((R)-(+)-2, 3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrol-[1,2,3-de]-1, 4-benzoxazin-6-yl)(1-naphtalenyl)methanone monomethanesulfonate), N-arachidonyl ethanolamide (anandamide) and the mu and kappa opioid receptor agonists heroin and U69593, alone and in conjunction with a cannabinoid receptor antagonist, SR 141716A [N-(piperidin-1-1-yl)-5-(4-chlorophenyl)-1(2, 4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride] and an opioid receptor antagonist, quadazocine, in rhesus monkeys (Macaca mulatta). Using 12 adult rhesus monkeys, latencies to remove the tail from a 50 degrees C water bath, respiration in 5% CO2 and heart rate were measured. When administered alone, SR 141716A (1.8, 5.6 mg/kg i.m.) did not alter nociception, respiration or heart rate. Delta-9-THC (0.1-10 mg/kg i.m.) and WIN 55212 (0.1-10 mg/kg i.m.) dose-dependently increased antinociception and dose-dependently decreased respiratory minute and tidal volumes and heart rate. These antinociceptive, respiratory and heart rate effects were reversed by SR 141716A but not by the opioid antagonist quadazocine (1 mg/kg i.m.). Anandamide (10 mg/kg i.m.) also produced antinociception. Heroin (0.01-10 mg/kg i.m.) and U69593 (0.01-3.2 mg/kg i.m.) also dose-dependently increased antinociception and decreased respiratory and heart rate measures; these effects were antagonized by quadazocine but not by SR 141716A. These results demonstrate selective and reversible antagonism of cannabinoid behavioral effects by SR 141716A in rhesus monkeys.  相似文献   

11.
Previous studies indicate that the CB1 cannabinoid receptor antagonist, N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-met hyl-1H-pyrazole-3-carboxamide HCl (SR141716A), inhibits the anandamide- and delta9-tetrahydrocannabinol- (THC) induced hypotension and bradycardia in anesthetized rats with a potency similar to that observed for SR141716A antagonism of THC-induced neurobehavioral effects. To further test the role of CB1 receptors in the cardiovascular effects of cannabinoids, we examined two additional criteria for receptor-specific interactions: the rank order of potency of agonists and stereoselectivity. A series of cannabinoid analogs including the enantiomeric pair (-)-11-OH-delta9-THC dimethylheptyl (+)-11-OH-delta9-THC dimethylheptyl were evaluated for their effects on arterial blood pressure and heart rate in urethane anesthetized rats. Six analogs elicited pronounced and long lasting hypotension and bradycardia that were blocked by 3 mg/kg of SR141716A. The rank order of potency was (-)-11-OH-delta9-THC dimethylheptyl > or = (-)-3-[2-hydroxy-4-(1,1-dimethyl-heptyl)phenyl]-4-[3-hydroxy-propyl]c yclohexan-1-ol > (-)-3-[2-hydroxy-4-(1,1-dimethyl-heptyl)phenyl]-4-[3-hydroxy-propyl]c yclohexan-1-ol > THC > anandamide > or = (-)-3-[2-hydroxy-4-(1,1-dimethyl-heptyl)phenyl]-4-[3-hydroxy-propyl]c yclohexan-1-ol, which correlated well with CB1 receptor affinity or analgesic potency (r = 0.96-0.99). There was no hypotension or bradycardia after palmitoylethanolamine or (+)-11-OH-delta9-THC dimethylheptyl. An initial pressor response was also observed with THC and anandamide, which was not antagonized by SR141716A. We conclude that the similar rank orders of potency, stereoselectivity and sensitivity to blockade by SR141716A indicate the involvement of CB1-like receptors in the hypotensive and bradycardic actions of cannabinoids, whereas the mechanism of the pressor effect of THC and anandamide remains unclear.  相似文献   

12.
In our previous study, we demonstrated that chronic ethanol (EtOH) exposure down-regulated the cannabinoid receptors (CB1) in mouse brain synaptic plasma membrane (SPM) (Basavarajappa et al., Brain Res. 793 (1998) 212-218). In the present study, we investigated the effect of chronic EtOH (4-day inhalation) on the CB1 agonist stimulated guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]GTP gamma S) binding in SPM from mouse. Our results indicate that the net CP55,940 stimulated [35S]GTP gamma S binding was increased with increasing concentrations of CP55,940 and GDP. This net CP55,940 (1.5 microM) stimulated [35S]GTP gamma S binding was reduced significantly (-25%) in SPM from chronic EtOH group (175 +/- 5.25%, control; 150 +/- 8.14%, EtOH; P < 0.05). This effect occurs without any significant changes on basal [35S]GTP gamma S binding (152.1 +/- 10.7 for control, 147.4 +/- 5.0 fmol/mg protein for chronic EtOH group, P > 0.05). Non-linear regression analysis of net CP55,940 stimulated [35S]GTP gamma S binding in SPM showed that the Bmax of cannabinoid stimulated binding was significantly reduced in chronic EtOH exposed mouse (Bmax = 7.58 +/- 0.22 for control; 6.42 +/- 0.20 pmol/mg protein for EtOH group; P < 0.05) without any significant changes in the G-protein affinity (Kd = 2.68 +/- 0.24 for control; 3.42 +/- 0.31 nM for EtOH group; P > 0.05). The pharmacological specificity of CP55,940 stimulated [35S]GTP gamma S binding in SPM was examined with CB1 receptor antagonist, SR141716A and these studies indicated that CP55,940 stimulated [35S]GTP gamma S binding was blocked by SR141716A with a decrease (P < 0.05) in the IC50 values in the SPM from chronic EtOH group. These results suggest that the observed down-regulation of CB1 receptors by chronic EtOH has a profound effect on desensitization of cannabinoid-activated signal transduction and possible involvement of CB1 receptors in EtOH tolerance and dependence.  相似文献   

13.
The effects of chronic ethanol (EtOH) consumption on the central nervous system may be related in part to its action on biological membranes by altering various receptor functions. In the current study, we examined the effects of chronic EtOH (4 day inhalation) on cannabinoid receptors (CB1) labeled with [3H]CP55,940 in synaptic plasma membranes (SPM) isolated from mouse brain. Our results indicate the presence of a high level of CB1 receptors in controls (Bmax=12.0+/-0.3 pmol mg-1 protein) which decreased significantly (-58%) in SPM from mouse brain chronically exposed to EtOH. This effect occurs without any changes in the receptor affinity (Kd=2. 3+/-0.3 nM for control and 2.9+/-0.3 nM for EtOH group, P>0.05). Dissociation kinetic results showed a dissociation rate constant (K-1) of 0.09+/-0.01 min-1 for control and this dissociation rate constant decreased significantly in the chronic EtOH treated mice brain (0.05+/-0.01 min-1, P<0.05). The competition studies with anandamide resulted in a substantial decrease in [3H]CP55,940 binding in both the control and EtOH group, with a decrease (P<0.05) in the Ki values in the SPM of chronic EtOH exposed mice. Hill transformation analysis showed an nH close to one in control (0. 92+/-0.01). This did not change significantly after chronic EtOH (0. 95+/-0.01) administration, which indicates the existence of a single class of receptor for [3H]CP55,940 binding in SPM from control and EtOH treated mice. The observed down-regulation of CB1 receptors by chronic EtOH may indicate the involvement of cannabinoid receptors in EtOH tolerance and dependence.  相似文献   

14.
The present study investigated the effects of the cannabinoid receptor agonist CP 55,940 (1-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl) phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol) and the cannabinoid receptor antagonist SR 141716A (N-(piperidin-l-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-me thyl-1 H-pyrazole-3-carboxamide hydrochloride) on ultrasonic vocalizations, body temperature and activity in 11-13-day-old rat pups. Testing occurred in a 5-min session 30 min following drug administration. CP 55,940 produced a dose-dependent decrease in ultrasonic vocalizations, with a 1000-micrograms/kg dose causing an almost complete inhibition of calls. Doses of 100 and 1000 micrograms/kg of CP 55,940, but not 10 micrograms/kg, caused significant hypothermia in the pups and the 1000 micrograms/kg dose also inhibited activity. The cannabinoid receptor antagonist SR 141716A (20 mg/kg) reversed the effects of 1000 micrograms/kg CP 55,940 on ultrasonic vocalizations and body temperature, but the benzodiazepine receptor antagonist flumazenil (20 mg/kg), the dopamine D1 receptor antagonist SCH 23390 (0.5 mg/kg) and the opioid receptor antagonist naloxone (1 mg/kg) did not. When administered alone, SR 141716A (20 mg/kg) increased pup ultrasonic vocalizations without affecting body temperature or activity. These results indicate that cannabinoids modulate ultrasonic vocalization production in rat pups in a manner that is independent of hypothermia. The increase in ultrasonic vocalizations produced by SR 141716A is one of the first reported behavioural effects of this drug and suggests that the endogenous cannabinoid ligand anandamide may be involved in the regulation of ultrasonic vocalizations.  相似文献   

15.
We have investigated the nature of cannabinoid receptors in guinea-pig small intestine by establishing whether this tissue contains cannabinoid receptors with similar binding properties to those of brain CB1 receptors. The cannabinoids used were the CB1-selective antagonist SR141716A, the CB2-selective antagonist SR144528, the novel cannabinoid receptor ligand, 6'-azidohex-2'-yne-delta8-tetrahydrocannabinol (O-1184), and the agonists CP55940, which binds equally well to CB1 and CB2 receptors, and WIN55212-2, which shows marginal CB2 selectivity. [3H]-CP55940 (1 nM) underwent extensive specific binding both to forebrain membranes (76.3%) and to membranes obtained by sucrose density gradient fractionation of homogenates of myenteric plexus-longitudinal muscle of guinea-pig small intestine (65.2%). Its binding capacity (Bmax) was higher in forebrain (4281 fmol mg(-1)) than in intestinal membranes (2092 fmol mg(-1)). However, the corresponding KD values were not significantly different from each other (2.29 and 1.75 nM respectively). Nor did the Ki values for its displacement by CP55940, WIN55212-2, O-1184, SR141716A and SR144528 from forebrain membranes (0.87, 4.15, 2.85, 5.32 and 371.9 respectively) differ significantly from the corresponding Ki values determined in experiments with intestinal membranes (0.99, 5.03, 3.16, 4.95 and 361.5 nM respectively). The Bmax values of [3H]-CP55940 and [3H]-SR141716A in forebrain membranes did not differ significantly from each other (4281 and 5658 fmol mg(-1)) but were both greater than the Bmax of [3H]-WIN55212-2 (2032 fmol mg(-1)). O-1184 (10 or 100 nM) produced parallel dextral shifts in the log concentration-response curves of WIN55212-2 and CP55940 for inhibition of electrically-evoked contractions of the myenteric plexus-longitudinal muscle preparation, its KD values being 0.20 nM (against WIN55212-2) and 0.89 nM (against CP55940). We conclude that cannabinoid binding sites in guinea-pig small intestine closely resemble CB1 binding sites of guinea-pig brain and that 0-1184 behaves as a cannabinoid receptor antagonist in the guinea-pig myenteric plexus-longitudinal muscle preparation.  相似文献   

16.
Based on both binding and functional data, this study introduces SR 144528 as the first, highly potent, selective and orally active antagonist for the CB2 receptor. This compound which displays subnanomolar affinity (Ki = 0.6 nM) for both the rat spleen and cloned human CB2 receptors has a 700-fold lower affinity (Ki = 400 nM) for both the rat brain and cloned human CB1 receptors. Furthermore it shows no affinity for any of the more than 70 receptors, ion channels or enzymes investigated (IC50 > 10 microM). In vitro, SR 144528 antagonizes the inhibitory effects of the cannabinoid receptor agonist CP 55,940 on forskolin-stimulated adenylyl cyclase activity in cell lines permanently expressing the h CB2 receptor (EC50 = 10 nM) but not in cells expressing the h CB1 (no effect at 10 microM). Furthermore, SR 144528 is able to selectively block the mitogen-activated protein kinase activity induced by CP 55,940 in cell lines expressing h CB2 (IC50 = 39 nM) whereas in cells expressing h CB1 an IC50 value of more than 1 microM is found. In addition, SR 144528 is shown to antagonize the stimulating effects of CP 55,940 on human tonsillar B-cell activation evoked by cross-linking of surface Igs (IC50 = 20 nM). In vivo, after oral administration SR 144528 totally displaced the ex vivo [3H]-CP 55,940 binding to mouse spleen membranes (ED50 = 0.35 mg/kg) with a long duration of action. In contrast, after the oral route it does not interact with the cannabinoid receptor expressed in the mouse brain (CB1). It is expected that SR 144528 will provide a powerful tool to investigate the in vivo functions of the cannabinoid system in the immune response.  相似文献   

17.
Using the endogenous cannabinoid receptor agonist anandamide, the synthetic agonist CP 55940 [[1alpha,2beta(R)5alpha]-(-)-5-(1,1-dimethylheptyl+ ++)-2-[5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]phenol], and the specific antagonist SR 141716 [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-me thyl-1H-pyrazole-3-carboxamide hydrochloride], second messenger activation of the central cannabinoid receptor (CB1) was examined in rat striatal and cortical slices. The effects of these cannabinoid ligands on electrically evoked dopamine (DA) release from [3H] dopamine-prelabelled striatal slices were also investigated. CP 55940 (1 microM) and anandamide (10 microM) caused significant reductions in forskolin-stimulated cyclic AMP accumulation in rat striatal slices, which were reversed in the presence of SR 141716 (1 microM). CP 55940 (1 microM) had no effect on either KCl- or neurotransmitter-stimulated 3H-inositol phosphate accumulation in rat cortical slices. CP 55940 and anandamide caused significant reductions in the release of dopamine after electrical stimulation of [3H]dopamine-prelabelied striatal slices, which were antagonised by SR 141716. SR 141716 alone had no effect on electrically evoked dopamine release from rat striatal slices. These data indicate that the CB1 receptors in rat striatum are negatively linked to adenylyl cyclase and dopamine release. That the CB1 receptor may influence dopamine release in the striatum suggests that cannabinoids play a modulatory role in dopaminergic neuronal pathways.  相似文献   

18.
The CB1 cannabinoid receptor antagonist SR 141716A abolished the inhibition of Ca2+ currents by the agonist WIN 55,212-2. However, SR 141716A alone increased Ca2+ currents, with an EC50 of 32 nM, in neurons that had been microinjected with CB1 cRNA. For an antagonist to elicit an effect, some receptors must be tonically active. Evidence for tonically active CB1 receptors was seen as enhanced tonic inhibition of Ca2+ currents. Preincubation with anandamide failed to enhance the effect of SR 141716A, indicating that anandamide did not cause receptor activity. Under Ca2+-free conditions designed to block the Ca2+-dependent formation of anandamide and sn-2-arachidonylglycerol, SR 141716A again increased the Ca2+ current. The Ca2+ current was tonically inhibited in neurons expressing the mutant K192A receptor, which has no affinity for anandamide, demonstrating that this receptor is also tonically active. SR 141716A had no effect on the Ca2+ current in these neurons, but SR 141716A could still antagonize the effect of WIN 55, 212-2. Thus, the K192 site is critical for the inverse agonist activity of SR 141716A. SR 141716A appeared to become a neutral antagonist at the K192A mutant receptor. Native cannabinoid receptors were studied in male rat major pelvic ganglion neurons, where it was found that WIN 55,212-2 inhibited and SR 141716A increased Ca2+ currents. Taken together, our results demonstrate that a population of native and cloned CB1 cannabinoid receptors can exist in a tonically active state that can be reversed by SR 141716A, which acts as an inverse agonist.  相似文献   

19.
To characterize the time course of the behavioral and biochemical aspects of the cannabinoid withdrawal syndrome, we injected the cannabinoid antagonist SR141716A (5 mg/kg i.p.) in rats made tolerant to CP-55,940 (0.4 mg/kg i.p., twice daily for 6.5 days), 1, 24 and 96 h after the last CP-55,940 injection. Because the CB1 receptor and G protein alpha subunit are involved in cannabinoid tolerance, we observed their changes throughout the brain during the withdrawal syndrome by use of in situ hybridization. In vehicle-pretreated rats SR141716A per se induced abnormal behavior significantly different from the vehicle group: wet dog shakes, forepaw fluttering and scratching. These signs remained significantly elevated even after the second and third antagonist doses. SR141716A significantly modified the mRNA levels of G alpha s and G alpha i subunits in some brain areas without affecting CB1 receptor and G alpha o expression. These findings led us to conclude that SR141716A may have intrinsic activity. Concerning cannabinoid withdrawal, the first SR141716A injection in tolerant rats resulted in behavioral signs different from those observed with the antagonist alone; this moderate withdrawal syndrome was characterized by turning, chewing and digging. Additional SR141716A doses 24 and 96 h later did not induce a significant abstinence syndrome. In situ hybridization after the first SR141716A injection showed that CB1 receptor and G protein alpha subunits, whose levels were low in tolerance, recovered their basal level of expression. Thus, the general desensitization of the cannabinoid receptor and of the transduction system in tolerance are recovered in abstinent rats and might be part of the molecular mechanisms underlying cannabinoid dependence.  相似文献   

20.
Arachidonylethanolamide (anandamide), a candidate endogenous cannabinoid ligand, has recently been isolated from porcine brain and displayed cannabinoid-like binding activity to synaptosomal membrane preparations and mimicked cannabinoid-induced inhibition of the twitch response in isolated murine vas deferens. In this study, anandamide and several congeners were evaluated as cannabinoid agonists by examining their ability to bind to the cloned cannabinoid receptor, inhibit forskolin-stimulated cAMP accumulation, inhibit N-type calcium channels, and stimulate one or more functional second messenger responses. Synthetic anandamide, and all but one congener, competed for [3H]CP55,940 binding to plasma membranes prepared from L cells expressing the rat cannabinoid receptor. The ability of anandamide to activate receptor-mediated signal transduction was evaluated in Chinese hamster ovary (CHO) cells expressing the human cannabinoid receptor (HCR, termed CHO-HCR cells) and compared to control CHO cells expressing the muscarinic m5 receptor (CHOm5 cells). Anandamide inhibited forskolin-stimulated cAMP accumulation in CHO-HCR cells, but not in CHOm5 cells, and this response was blocked with pertussis toxin. N-type calcium channels were inhibited by anandamide and several active congeners in N18 neuroblastoma cells. Anandamide stimulated arachidonic acid and intracellular calcium release in both CHOm5 and CHO-HCR cells and had no effect on the release of inositol phosphates or phosphatidylethanol, generated after activation of phospholipase C and D, respectively. Anandamide appears to exhibit the essential criteria required to be classified as a cannabinoid/anandamide receptor agonist and shares similar nonreceptor effects on arachidonic acid and intracellular calcium release as other cannabinoid agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号