首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown that melanoma cells were resistant to apoptosis induced by TNF family members Fas ligand (FasL), TNF-alpha, and CD40L. FasL also was not involved in CD4 T cell-mediated killing of melanoma cells. In the present study, we have tested melanoma cells for their susceptibility to apoptosis induced by human TNF-related apoptosis-inducing ligand (TRAIL) and the ability of a mAb against TRAIL to inhibit apoptosis and CD4 CTL-mediated killing of melanoma and Jurkat target cells. The results show that TRAIL-induced apoptosis in cells from 7 of 10 melanoma cell lines tested as well as in Jurkat T cells. Susceptibility to apoptosis was increased in some of the cell lines by treatment with cyclohexamide or actinomycin D. The melanoma cells were resistant to apoptosis induced by FasL, TNF-alpha, and CD40L. mAb M180 against TRAIL inhibited apoptosis induced by TRAIL. It was also found to inhibit CD4 CTL-mediated killing of Jurkat T cells as well as autologous and allogeneic melanoma cells. The degree of inhibition produced by the mAb varied between different clones of CTL and according to the susceptibility of the target cells to TRAIL-induced apoptosis. These results suggest that TRAIL is an important mediator of cell death induced by CTL and may have an important therapeutic role against human melanoma.  相似文献   

2.
Cytolytic T cells use two mechanisms to kill virally infected cells, tumor cells, or other potentially autoreactive T cells in short-term in vitro assays. The perforin/granule exocytosis mechanism uses preformed cytolytic granules that are delivered to the target cell to induce apoptosis and eventual lysis. FasL/Fas (CD95 ligand/CD95)-mediated cytolysis requires de novo protein synthesis of FasL by the CTL and the presence of the death receptor Fas on the target cell to induce apoptosis. Using a CD8(+) CTL clone that kills via both the perforin/granule exocytosis and FasL/Fas mechanisms, and a clone that kills via the FasL/Fas mechanism only, we have examined the requirement of intra- and extracellular Ca2+ in TCR-triggered cytolytic effector function. These two clones, a panel of Ca2+ antagonists, and agonists were used to determine that a large biphasic increase in intracellular calcium concentration, characterized by release of Ca2+ from intracellular stores followed by a sustained influx of extracellular Ca2+, is required for perforin/granule exocytosis. Only the sustained influx of extracellular Ca2+ is required for FasL induction and killing. Thapsigargin, at low concentrations, induces this small but sustained increase in [Ca2+]i and selectively induces FasL/Fas-mediated cytolysis but not granule exocytosis. These results further define the role of Ca2+ in perforin and FasL/Fas killing and demonstrate that differential Ca2+ signaling can modulate T cell effector functions.  相似文献   

3.
Human Fas ligand (L) (CD95L) and tumor necrosis factor (TNF)-alpha undergo metalloproteinase-mediated proteolytic processing in their extracellular domains resulting in the release of soluble trimeric ligands (soluble [s]FasL, sTNF-alpha) which, in the case of sFasL, is thought to be implicated in diseases such as hepatitis and AIDS. Here we show that the processing of sFasL occurs between Ser126 and Leu127. The apoptotic-inducing capacity of naturally processed sFasL was reduced by >1,000-fold compared with membrane-bound FasL, and injection of high doses of recombinant sFasL in mice did not induce liver failure. However, soluble FasL retained its capacity to interact with Fas, and restoration of its cytotoxic activity was achieved both in vitro and in vivo with the addition of cross-linking antibodies. Similarly, the marginal apoptotic activity of recombinant soluble TNF-related apoptosis-inducing ligand (sTRAIL), another member of the TNF ligand family, was greatly increased upon cross-linking. These results indicate that the mere trimerization of the Fas and TRAIL receptors may not be sufficient to trigger death signals. Thus, the observation that sFasL is less cytotoxic than membrane-bound FasL may explain why in certain types of cancer, systemic tissue damage is not detected, even though the levels of circulating sFasL are high.  相似文献   

4.
5.
Fas ligand (FasL) on cytotoxic lymphocytes is important for mediating apoptosis of activated lymphocytes and other target cells. We have reported that NK cell functions, such as proliferation, cell death, and killing activity, are subject to regulation by cellular redox status. Here, we report that expression of FasL protein and mRNA in activated NK cells is also regulated by redox. Ligation of CD16 on IL-2-preactivated NK cells resulted in reduction of intracellular peroxide level as well as induction of FasL expression. This CD16-induced FasL expression was suppressed by oxidative stress, including thiol deprivation or treatment with hydrogen peroxide (H2O2). Addition of thiol-reducing compounds, such as L-cystine, 2-ME, or N-acetyl cysteine, restored FasL expression. These data suggest that CD16 stimulation requires cellular reducing status for FasL induction in NK cells. Because FasL gene activation following CD16 cross-linking is regulated by the NF of activated T cells (NFAT), we examined the effect of oxidative stresses on NFAT activation. Electrophoretic mobility shift assays revealed that both thiol insufficiency and H2O2 treatment suppressed DNA-binding activity of NFAT and that addition of thiol-reducing compounds reversed or even enhanced it. Furthermore, these oxidative stresses inhibited activity of calcineurin, a serine/threonine phosphatase that regulates NFAT activation. These results suggest that suppression of calcineurin and NFAT activation is a mechanism by which oxidative stress inhibits FasL induction in activated NK cells and further support the hypothesis that thiol-reducing compounds might be required for maintenance of optimal NK functions under physiologic oxidative conditions.  相似文献   

6.
Fas (CD95/APO-1) is a transmembrane protein of the TNF/neuron growth factor receptor family. Ligation of Fas by specific Abs or Fas ligand (FasL/CD95 ligand) induces rapid apoptotic cell death in a variety of cell types. Despite progress in understanding the death signals transduced from Fas, very little is known with regard to the mechanisms by which Fas expression is regulated. Using our previously established murine T cell hybridoma model A1.1, we show that specific protein kinase C (PKC) inhibitors could block activation-induced Fas expression and apoptosis. The activation of PKC with PMA or 1-oleoyl-2-acetyl-sn-glycerol could mimic the TCR signal by inducing the expression of Fas but not FasL. PKC-dependent Fas expression was also observed in several murine and human tumor cell lines. Since the inhibition of Ca2+ redistribution by an inhibitor of intracellular Ca2+ mobilization, 8-(diethylamino)-octyl-3,4,5-trimethoxybenzoate hydrochloride, inhibited TCR-induced FasL but not Fas, the expression of Fas appears to be independent of Ca2+ mobilization. Significantly, expression of the newly identified Fas-regulatory gene, TDAG51, was found to be dependent upon the activity of PKC. PKC activation only induced Fas expression in cells expressing wild-type TDAG51. Thus, Fas expression is likely mediated by PKC through TDAG51.  相似文献   

7.
Bacterial polysaccharides have a wide range of activities in mammals. We have studied the effect of LPS and poly-beta-(1-->4)-D-mannuronate (mannuronan, poly-M), an exopolysaccharide from Pseudomonas aeruginosa, on the cytotoxicity mediated by murine bone marrow cells (BMC). Addition of LPS or mannuronan to BMC induced a time- and dose-dependent cytotoxicity against Jurkat cells. The LPS- or mannuronan-induced cytotoxicity was due to increased Fas ligand (FasL) expression by BMC, since 1) Fas-transfected L1210-Fas target cells were more susceptible to lysis than the Fas(low)-expressing parent L1210 cells, 2) stimulated BMC from FasL-defective gld/gld mice were not cytolytic and, 3) the cytolytic activity of normal BMC was inhibited by a Fas-Fc fusion protein. Flow cytometry showed an increase in surface FasL in LPS-stimulated BMC. RT-PCR analysis of BMC revealed constitutive expression of FasL mRNA, which was increased after LPS stimulation. Immunomagnetic depletion of NK1.1-, CD2-, or CD32/16-expressing cells from BMC abrogated the LPS-induced BMC cytotoxicity against L1210-Fas cells, suggesting that NK cells were the cytotoxic effector cells. Depletion of CD45R/B220-, Gr-1-, or CD11b/Mac-1-expressing cells only partially decreased BMC-mediated cytotoxicity, and depletion of CD4- or CD8a-expressing cells had no effect. The results support the conclusion that LPS and mannuronan induce expression of cytotoxic FasL on bone marrow NK cells.  相似文献   

8.
The interaction of Fas with Fas ligand (FasL) mediates activation-induced cell death (AICD) of T hybridomas and of mature T lymphocytes. The TNF/TNF receptor system also plays a significant role in AICD of mature T cells and in the maintenance of peripheral tolerance. We previously demonstrated that in human Jurkat leukemia cells, AICD is triggered mainly by the rapid release of preformed FasL upon TCR stimulation. In the present work, we show that the cytotoxic cytokine APO2 ligand (APO2L; also known as TRAIL) is constitutively expressed as an intracytoplasmic protein in Jurkat T cells and derived sublines. APO2L is also detected in fresh human peripheral blood mononuclear cells (PBMC) from a significant number of donors, and the amount of both FasL and APO2L substantially increases upon blast generation. A neutralizing anti-APO2L monoclonal antibody (mAb) partially suppresses the cytotoxicity induced by supernatants of phytohemagglutinin (PHA)-prestimulated Jurkat or human PBMC on non-activated Jurkat cells, indicating that APO2L is released by these cells and contributes to AICD. A combination of neutralizing anti-APO2L and anti-Fas mAb blocks around 60 % of the toxicity associated with supernatants from PHA-activated human PBMC. These results show that FasL and APO2L account for the majority of cytotoxic activity released during AICD, and suggest that additional uncharacterized factors may also contribute to this process.  相似文献   

9.
Two pathways have been implicated in the induction of apoptosis by cytotoxic T cells: the granule exocytosis pathway and a pathway using CD95 (Fas/APO-1). To test whether apoptosis induced by either of these pathways could be blocked by Bcl-2, we exposed bcl-2-transfected cells to CTL derived from normal, perforin-deficient, or CD95 ligand mutant (gld) mice. Although the levels of Bcl-2 expression achieved were able to protect FDC-P1 and Yac-1 transfectants from a variety of apoptotic stimuli, the cells were not protected from cytolysis mediated by CTL from any of these sources, by NK cells, or granules isolated from CTL. However, Bcl-2 expression significantly inhibited apoptosis induced by purified granzyme B and perforin. These results suggest that while Bcl-2 is capable of inhibiting the apoptotic pathway utilized by perforin and granzyme B, other granule components can bypass this block. We conclude that CTL harbor potent killing mechanism(s) in addition to those provided by CD95 ligand or perforin and granzyme B that cannot be overcome by Bcl-2.  相似文献   

10.
Mycobacterium tuberculosis-specific cytolytic activity is mediated mostly by CD4+CTL in humans. CD4+CTL kill infected target cells by inducing Fas (APO-1/CD95)-mediated apoptosis. We have examined the effect of Fas ligand (FasL)-induced apoptosis of human macrophages infected in vitro with M. tuberculosis on the viability of the intracellular bacilli. Human macrophages expressed Fas and underwent apoptosis after incubation with soluble recombinant FasL. In macrophages infected either with an attenuated (H37Ra) or with a virulent (H37Rv) strain of M. tuberculosis, the apoptotic death of macrophages was associated with a substantial reduction in bacillary viability. TNF-induced apoptosis of infected macrophages was coupled with a similar reduction in mycobacterial viability, while the induction of nonapoptotic complement-induced cell death had no effect on bacterial viable counts. Infected macrophages also showed a reduced susceptibility to FasL-induced apoptosis correlating with a reduced level of Fas expression. These data suggest that apoptosis of infected macrophages induced through receptors of the TNF family could be an immune effector mechanism not only depriving mycobacteria from their growth environment but also reducing viable bacterial counts by an unknown mechanism. On the other hand, interference by M. tuberculosis with the FasL system might represent an escape mechanism of the bacteria attempting to evade the effect of apoptosis.  相似文献   

11.
Fas ligand (FasL) is produced by activated T cells and natural killer cells and it induces apoptosis (programmed cell death) in target cells through the death receptor Fas/Apol/CD95. One important role of FasL and Fas is to mediate immune-cytotoxic killing of cells that are potentially harmful to the organism, such as virus-infected or tumour cells. Here we report the discovery of a soluble decoy receptor, termed decoy receptor 3 (DcR3), that binds to FasL and inhibits FasL-induced apoptosis. The DcR3 gene was amplified in about half of 35 primary lung and colon tumours studied, and DcR3 messenger RNA was expressed in malignant tissue. Thus, certain tumours may escape FasL-dependent immune-cytotoxic attack by expressing a decoy receptor that blocks FasL.  相似文献   

12.
In the present study, we investigated the differentiation of human NK cells from bone marrow, cord blood and mobilized peripheral blood purified CD34+ stem cells using a potent culture system. Elutriated CD34+ stem cells were grown for several weeks in medium supplemented with stem cell factor (SCF) and IL-15 in the presence or absence of a murine stromal cell line (MS-5). Our data indicate that IL-15 induced the proliferation and maturation of highly positive CD56+ NK cells in both types of culture, although murine stromal cells slightly increased the proliferation of NK cells. NK cells differentiated in the presence of MS-5 were mostly CD56+ CD7 and a small subset expressed CD16. These in vitro differentiated CD56+ NK cells displayed cytolytic activity against the HLA class I- target K562. The CD56+ CD16+ subset also lysed NK-resistant Daudi cells. Neither of these NK subsets were shown to express Fas ligand. Total CD56+ cells expressed high amounts of transforming growth factor-beta and granulocyte-macrophage colony-stimulating factor, but no IFN-gamma. Investigation of NK receptor expression showed that most CD56+ cells expressed membrane CD94 and NKG2-A mRNA. PCR analysis revealed that p58 was also expressed in these cells. The role of CD94 in NK cell-mediated cytotoxicity was assessed on human HLA-B7-transfected murine L cells. While a low cytotoxic activity towards HLA-B7 cells was observed, the HLA-DR4 control cells were killed with high efficiency. These studies demonstrate that cytolytic and cytokine-producing NK cells may be derived from adult and fetal precursors by IL-15 and that these cells express a CD94 receptor which may influence their lytic potential.  相似文献   

13.
Interaction of Fas-ligand (Fas-L) with the extracytoplasmic domain of the Fas receptor can induce Fas trimerization and activation of the apoptotic cell death process. Several molecular pathways that lead to apoptosis and some of their regulatory mechanisms have been identified. Fas-related membrane receptors that contain a death domain in their intracytoplasmic domain have been identified. They constitute a death receptor family (DR1 to DR5) whose first member is the TNFR1 receptor for TNF alpha. The Fas/Fas-L system plays a role in the cytotoxic activity of immune cells and the regulation of immune response amplitude. This system could be involved in the immune response to tumor cells and the cytotoxic activity of drugs and radiations. The expression of Fas-L on the plasma membrane of numerous tumor cells allow them, in vitro, to kill Fas-expressing immune cells. This observations has suggested that tumor cells used Fas-L to induce a specific immune tolerance. However, in vivo, Fas-L expression rather induces tumor cell rejection. The quantity of Fas-L expressed on tumor cells could determine whether tumor cells are tolerated or rejected. Cytotoxic drugs and radiations modulate Fas and Fas-L expression on tumor cells. The role of Fas/Fas-L interactions in the cytotoxicity of these agents remains poorly defined. It has been clearly shown, however, that low doses of cytotoxic drugs increase Fas expression on tumor cells, thereby improving their elimination by immune cells. Drug-induced modulation of Fas expression could provide new therapeutic strategies combining chemotherapy with immunotherapy.  相似文献   

14.
Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells   总被引:1,自引:0,他引:1  
The observation that TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF cytokine family, induces apoptosis in a number of different tumor cell types led us to compare the tumoricidal effects of TRAIL to those of other TNF family molecules on human melanoma cells. We found that a high proportion of the melanoma cell lines tested were killed by TRAIL, whereas all the melanoma lines were resistant to the other TNF family cytokines tested. TRAIL-induced death was characterized by caspase activation and cellular protein cleavage within minutes of TRAIL addition, and death could be completely inhibited by the caspase inhibitors Ile-Glu-Thr-Asp (IETD) and Val-Ala-Asp (VAD), indicating the presence of a TRAIL receptor signaling pathway similar to that identified for Fas and TNF receptors. Specific TRAIL receptor expression was determined by RT-PCR, and the presence of mRNA encoding the "protective" TRAIL receptors did not correspond to resistance or sensitivity to TRAIL-induced apoptosis. Addition of protein synthesis inhibitors to TRAIL-resistant melanomas rendered them sensitive to TRAIL, indicating that the presence or the absence of intracellular apoptosis inhibitors may mediate resistance or sensitivity to TRAIL-mediated apoptosis. Expression of one such inhibitor, FLICE-inhibitory protein (FLIP), was highest in the TRAIL-resistant melanomas, while being low or undetectable in the TRAIL-sensitive melanomas. Furthermore, addition of actinomycin D to TRAIL-resistant melanomas resulted in decreased intracellular concentrations of FLIP, which correlated with their acquisition of TRAIL sensitivity. Collectively, our results indicate that TRAIL-induced apoptosis occurs through a caspase signaling cascade and that resistance is controlled by intracellular regulators of apoptosis.  相似文献   

15.
Both T cells and natural killer (NK) cells express CD2, the target of an alternative activation pathway that induces the proliferation of both cell types. The mitogenic response to CD2 ligation requires the co-expression of CD3:TCR in T cells and FcgammaRIII in NK cells, suggesting that these receptors are involved in transducing the response initiated by CD2. The ability of FcgammaRIII to trigger the activation-induced death of IL-2-primed NK cells led us to investigate the potential for CD2 to trigger activation-induced NK cell death. Our results reveal that the same anti-CD2 monoclonal antibodies (mAb) that activate freshly isolated NK cells induce apoptosis in IL-2-primed NK cells. CD2-induced apoptosis results in chromatin condensation, DNA fragmentation and cleavage of caspase-3. Activation-induced NK cell death triggered by CD2 ligation is extremely rapid (DNA fragmentation is first observed at 90 min) and it is not inhibited by neutralizing antibodies reactive with TNF-alpha or Fas ligand. Whereas mAb reactive with distinct CD2 epitopes (i.e. T11.1, T11.2, and T11.3) are required for activation-induced T cell death, mAb reactive with a single CD2 epitope are sufficient for activation-induced NK cell death. The ability of CD2, CD16, and CD94 to induce apoptosis in IL-2-primed lymphocytes suggests that cytokine priming changes the response to a signaling cascade that is common to each of these activation receptors.  相似文献   

16.
APO2L (TRAIL) is a novel CD95L (Fas/APO-1-L) homologous cytotoxic cytokine that interacts with various receptors which transmit (DR4, DR5) or inhibit (DcR1, DcR2) an apoptotic signal. Here, we report that human glioma cell lines preferentially express mRNAs for agonistic death receptors DR4 (8/12) and DR5 (11/12) rather than the death-inhibitory decoy receptors DcR1 (4/12) and DcR2 (2/12). Ten of 12 cell lines are susceptible to APO2L-induced apoptosis. The resistant cell lines, U138MG and U373MG, are cross-resistant to CD95L-induced apoptosis. Similar to CD95L-induced apoptosis, APO2L-induced apoptosis is inhibited by ectopic expression of the caspase inhibitor, crm-A, or of bcl-2, or by coexposure to the corticosteroid, dexamethasone, or the lipoxygenase inhibitor, nordihydroguaretic acid. There is no correlation between p53 genetic status of the cell lines and their susceptibility to APO2L-induced apoptosis, but the latter is moderately enhanced by ectopic expression of wild-type p53. APO2L targeting may be a promising approach for selectively targeting apoptosis to human malignant glioma cells.  相似文献   

17.
Mouse CD8+ CTL reactive with an H-2Db presented 9-mer peptide of the human papilloma virus 16 (HPV-16) protein E749-57 (RAHYNIVTF) were generated from the splenocytes of wild-type C57BL/6 (B6), B6.perforin-deficient, B6.gld or B6.TNF-deficient mice. In short-term (4 h) assays, CTL from B6, B6.TNF-deficient and B6.gld mice displayed peptide-specific perforin- and/or Fas ligand (FasL)-mediated lysis of E7-transfected mouse RMA lymphoma cells (RMA-E7) or E749-57 peptide-pulsed RMA-S cells, while CD8+ CTL from B6.perforin-deficient mice lysed via FasL exclusively. Rapid and efficient lysis of syngeneic bystander B6 spleen T cell blasts by B6, B6.TNF-deficient or B6.perforin-deficient antigen-activated CTL was mediated apparently exclusively by a FasL/Fas mechanism. By contrast CTL from B6.gld mice did not mediate rapid bystander lysis of B6 blasts. Rather B6.gld CTL delivered delayed bystander lysis after 36-48 h that was mediated by TNF. TNF-mediated bystander lysis of syngeneic blasts appeared to be independent of class I molecules and was mediated at least in part by soluble TNF. By contrast, there was no evidence that soluble FasL-mediated bystander lysis. For the first time, these data indicate that CD8+ CTL may use FasL or TNF in a kinetically and physically distinct fashion to mediate bystander killing.  相似文献   

18.
The proliferation and survival of a B cell population is necessarily tightly controlled to prevent the arisal of malignancy or autoimmunity. The expansion or elimination of a B cell clone is determined through a complex interaction of the tumour necrosis factor receptor/nerve growth factor receptor family members CD40 and Fas, which are expressed on the B cell surface, with their respective physiological ligands (CD40L and FasL) expressed on the surface of CD4+ T cells. The regulation of B cell growth by signals transduced through CD40 and Fas contributes to the maintenance of peripheral tolerance and likely takes place and in the germinal centres (GC) of secondary lymphoid tissues. In this study, we investigate the relationship between the expression of Fas and B cell survival following engagement of CD40 and Fas in the Epstein-Barr virus-genome-negative Ramos-Burkitt lymphoma (Ramos-BL) B cell line model of GC B lymphocyte selection during maturation of the humoral immune response. We now present evidence that Ramos-BL B cells constitutively express both Fas and FasL on their surface and that expression of Fas, but not FasL, is enhanced following ligation of CD40. Coligation of CD40 and Fas, triggers for growth inhibition, activation of the interleukin-1 beta-converting enzyme, now caspase, family member CPP32 (caspase-3) but not Ich-1L (caspase-2), cleavage of its death substrate poly(ADP-ribose) polymerase, and apoptosis from the G1 phase of cell cycle; engagement of Fas alone fails to trigger for growth inhibition and apoptosis but enhances AgR-mediated cellular death. This CD40-potentiated Fas-triggered growth inhibition and apoptosis occurs in the presence of CD40-induced expression of the anti-apoptotic proteins Bcl-xL and Bcl-2. Taken together, these data indicate that ligation of CD40 facilitates efficient coupling of Fas to the caspase-mediated pathway of apoptosis.  相似文献   

19.
20.
We investigated the cellular and humoral interactions between peripheral blood mononuclear cells (PBMCs) and human osteoblasts, leading to apoptosis of osteoblasts. Human osteoblastic cell line MG63 and human primary osteoblast-like cells obtained from biopsy specimens were used in this study. PBMCs were isolated from healthy donors and cultured with or without stimulation by recombinant interleukin-2 followed by 12-o-tetradecanoylphorbol 13-acetate with ionomycin. Fas was functionally expressed on MG63 and primary osteoblast-like cells. Activated PBMCs expressed Fas ligand (FasL) strongly on their surface and killed MG63 and primary osteoblast-like cells. Cultured supernatants of activated PBMCs also induced apoptotic cell death of MG63 and primary osteoblast-like cells. In contrast, both unstimulated PBMCs and cultured supernatants of unstimulated PBMCs did not induce apoptosis of these cells. Furthermore, the cytotoxic effect and induction of apoptosis against MG63 and primary osteoblast-like cells by activated PBMCs and cultured supernatants were inhibited significantly by human Fas chimeric protein. Our data showed that human osteoblasts expressed Fas fuctionally and both membrane-type and soluble form FasL from activated PBMCs induced apoptosis of these cells, providing the one possible mechanism of bone loss in inflammatory diseases such as rheumatoid arthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号