首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The unburned carbon in fly ash is one of the important factors for the boiler combustion condition. Controlling the unburned carbon in fly ash is beneficial for fly ash recycle and to improve the combustion efficiency of the coal. Laser-induced breakdown spectroscopy (LIBS) technology has been applied to measure the fly ash contents due to its merits of non-contact, fast response, high sensitivity, and real-time measurement. In this study, experimental measurements have been adopted for fly ash flows with the surrounding gases of N2 and CO2, while the CO2 concentration varified to evaluate the CO2 effect on the unburned carbon signal from fly ash powder. Two kinds of pulse width lasers, 6?ns and 1?ns, were separately adopted to compare the influence of laser pulse width. Results showed that compared with that using 6?ns pulse width laser, plasma temperature was lower and had less dependence on delay time when using 1?ns pulse width laser, and spectra had more stable background. By using 1?ns pulse width laser, the emission signal from surrounding CO2 also decreased because of the less surrounding gas breakdown. The solid powder breakdown signals also became more stable when using 1?ns pulse width laser. It is demonstrated that 1?ns pulse width laser has the merits for fly ash flow measurement using LIBS.  相似文献   

2.
Expressions are derived for calculations of the total probabilities and electron spectra for the photodetachment of electrons from negative ions with filled valence s shells by ultrashort laser pulses. Particular calculations have been performed for two negative ions (H and Li) and titanium-sapphire laser pulses with a carrier wavelength of 0.8 μm and a duration of 4 fs. It is shown that measurements of the electron energy spectra allow either the emission spectrum to be determines for the known cross-section of photodetachment or a dispersion curve of the electron photodetachment cross section to be constructed for the given spectrum of laser pulses. In addition, these measurements provide a tool for the exact determination of electron binding energies.  相似文献   

3.
A short laser pulse is irradiated on a sample to create a highly energetic plasma that emits light of a specific peak wavelength according to the material. By identifying different peaks for the analyzed samples, their chemical composition can be rapidly determined. The characteristics of the laser-induced breakdown spectroscopy (LIBS) plasma are strongly dependent on the ambient conditions. Research aimed at enhancing LIBS intensity is of great benefit in advancing LIBS for the exploration of harsh environments. By using double-pulse LIBS, the signal intensity of Al and Ca lines was enhanced by five times compared to the single-pulse signal. Also, the angles of the target and detector are adjusted to simulate samples of arbitrary shape. We verified that there exists an optimal angle at which specific elements of a test sample may be detected with stronger signal intensity. We provide several optimum configurations for the LIBS system for maximizing the signal intensity for the analysis of a nonstandard aluminum sample.  相似文献   

4.
The problem of relaxation is solved for a thermal lens which has been formed by a short laser pulse in a condensed medium. An expression is obtained for the focal length of such a lens and the asymptotic trend of the focal length as time increases is determined.Translated from Inzhenerno-Fizicheski Zhurnal, Vol. 45, No. 6, pp. 983–987, December, 1983.  相似文献   

5.
Translated from Izmeritel'naya Tekhnika, No. 9, pp. 37–39, September, 1991.  相似文献   

6.
Theoretical and experimental research on laser beam quality parameters is discussed. The optical layout of the apparatus and its technical characteristics are described.  相似文献   

7.
We report on the development of a highly sensitive detection system for measuring atmospheric NO(2) by means of a laser-induced fluorescence (LIF) technique at 473 nm using a diode-pumped Nd:YAG laser. A GaN-based laser diode emitting at 410 nm is also used as an alternative fluorescence-excitation source. For laboratory calibrations, standard NO(2) gas is diluted with synthetic air and is introduced into a fluorescence-detection cell. The NO(2) LIF signal is detected by a photomultiplier tube and processed by a photon-counting method. The minimum detectable limits of the NO(2) instrument developed have been estimated to be 0.14 ppbv and 0.39 ppbv (parts per billion, 10(-9), by volume) in 60 s integration time (signal-to-noise ratio of 2) for 473 and 410 nm excitation systems, respectively. Practical performance of the instrument has been demonstrated by the 24 hour continuous measurements of ambient NO(2) in a suburban area.  相似文献   

8.
The authors obtain a new equation to estimate the forward component of a photon dose generated through the interaction between a target and a short pulse high power laser. As the equation is quite simple, it is useful for calculating the photon dose. The equation shows that the photon dose is proportional to the electron temperature in the range>3 MeV and proportional to the square of the electron temperature in the range<3 MeV. The dose estimated with this method is roughly consistent with the result of Monte Carlo simulation. With some assumptions and corrections, it can reproduce experimental results obtained and the dose result calculated at other laboratories.  相似文献   

9.
The particle size distribution and composition of nanosecond laser-generated aerosols from brass samples in atmospheric argon has been measured by low-pressure impaction and subsequent quantitative analysis of the aerosols by total reflection X-ray fluorescence. Ablation was performed applying a Nd:YAG laser at 1.06 microm both without and with a prepulse plasma breakdown generated by a second Nd:YAG laser at 2-60 micros prior to the ablation pulse. The beam of the prepulse laser had orthogonal direction to the ablation laser beam, and the breakdown was produced 2.5 mm above the ablation spot. Ultrafine aerosol particles (<50 nm) were generated in the double-pulse experiment representing practically the total mass impacted, while in single-pulse ablation the proportion of large particles (>0.1 microm) was dominating. The predominance of ultrafine aerosols in the prepulse experiment indicates that particle formation from vapor-phase condensation is the major mechanism, while the appearance of large particles in single-pulse ablation points at fragmentary evaporation in the laser-produced plasma. It was also shown that the total mass impacted in double-pulse ablation increases almost linearly with the power of the prepulse laser. The better atomization and the larger sample mass ablated can be assumed to be the main reasons for the increase of the line intensities in double-pulse laser-induced breakdown spectrometry with orthogonal prepulses reported by several research groups.  相似文献   

10.
Cannon RD  Spears KG 《Applied optics》1995,34(30):6834-6836
A reliable pulsed Nd:YAG laser system has been designed to produce 150-mJ pulses of 260-ps duration with a shot-to-shot standard deviation of ±5.8% and a full-angle divergence of 0.6 mrad. The stability is due to a new cavity-dumped oscillator design that uses an intracavity GaAs plate to stabilize the pulse development and inhibit large fluctuations. The resulting output pulse from the cavity-dumped oscillator is 103 μJ, with an average shot-to-shot standard deviation of ±1.1% and a full-angle divergence of 2 mrad.  相似文献   

11.
R Li  N Madampoulos  Z Zhu  L Xie 《Applied optics》2012,51(21):5011-5018
All-fiber laser Doppler vibrometer systems have great potential in the application of remote acoustic detection. However, due to the requirement for a long operating distance, a long coherence length laser is required, which can drive the system cost high. In this paper, a system using a short coherence length laser is proposed and demonstrated. Experimental analysis indicates that the multi-longitudinal modes of the laser cause detection noise and that the unequal length between two paths (local oscillator path and transmission path) increases the intensity and the frequency components of the noise. In order to reduce the noise, the optical length of the two paths needs to be balanced, within the coherence length of the source. We demonstrate that adopting a tunable optical delay to compensate the unequal length significantly reduces the noise. In a comparison of the detection results by using a short coherence laser and a long coherence laser, our developed system gives a good performance on the acoustic signal detection from three meters away.  相似文献   

12.
Differential reflectometry (DR) is an effective tool to supplement existing explosives detection systems thus making the combined unit more effective than one tool alone. It is an optical technique in which the light beam (UV) emanates from an extended distance onto the substance under investigation, thus rendering it to be a standoff method. DR allows the measurement of the energies that electrons absorb from photons as they are raised into higher, allowed energy states. These electron transitions serve as a "fingerprint" for identifying substances. The device can be made portable; it is fast, safe for the public, does not require human involvement, is cost effective, and most of all, does not require ingestion of a suspicious substance into an instrument. Various embodiments are presented.  相似文献   

13.
The passive remote monitoring of multi-gas mixtures was experimentally investigated using Fourier transform infrared (FT-IR) radiometry. The spectral radiance data were collected using a dual-port radiometrically balanced interferometer for a variety of multi-gas plumes at a standoff distance of 60 m. Two basic sets of mixtures were studied. The first set corresponded to mixtures consisting of three gases with no overlapping spectral bands (C(2)H(2), C(2)H(4), and R14). The second set corresponded to mixtures of three gases having significant spectral overlap (C(2)H(4), R114, and R134a). For each mixture the flow rates of individual constituents were adjusted to yield specific constituent optical-density (CL) ratios. These ratios were compared to the optical-density ratios retrieved from the measured infrared radiance spectra. Results of this study indicated that for both sets of multi-gas mixtures the optical-density ratios retrieved by the passive remote monitoring technique were in good agreement with those derived from the release flow rates, provided that a simple correction scheme was introduced to compensate for the limited accuracy of the fast radiance model implemented in the monitoring algorithm.  相似文献   

14.
15.
三脉冲激光雷达的目标检测   总被引:5,自引:0,他引:5  
夏桂芬  赵保军  韩月秋 《光电工程》2006,33(3):137-140,144
讨论了如何利用数字信号处理技术提高激光雷达的目标探测能力。采用三脉冲累加技术提高信噪比1.732倍。根据三脉冲激光雷达回波信号的特点,对信号进行差分滤波和匹配滤波处理,信噪比提高约1.5倍;根据目标的相关性采用多帧相关检测对目标进行检测,通过多次的匹配,检测概率增加,虚警概率降低。外场实验结果表明,三脉冲数字激光雷达的成力大大提高,最小可检测信噪比为1.5,迎头截获距离可提高约2-3倍。  相似文献   

16.
Detection of sulfur by optical emission spectroscopy generally presents some difficulties because the strongest lines are in the vacuum UV below 185 nm and therefore are readily absorbed by oxygen molecules in air. A novel concept for a low-cost and efficient system to detect sulfur using near-IR bands by laser-induced breakdown spectroscopy is here proposed. This concept is based on customized thick holographic gratings as spectral filtering elements. The signal integration and the temporal synchronization are performed using built-in custom electronics that amplify and integrate or trigger photodiode output signals. In this work, we use the near-IR lines at 921.287 nm and a background reference at 900 nm. Preliminary results show a limit of detection comparable to that of a conventional high-end system.  相似文献   

17.
Ionization processes under the interaction of an ultrashort pulse of an electromagnetic field with atoms in nonstationary states are considered. As an example, the ionization probability of the hydrogen-like atom upon the decay of quasi-stationary state is calculated. The method developed can be applied to complex systems, including targets in collisional states and various chemical reactions.  相似文献   

18.
在短脉冲激光作用下薄膜的损伤机制   总被引:3,自引:0,他引:3  
计算了不同材料的能带带隙、初始电子密度、激光波长和激光脉宽等参效对薄膜的抗激光损伤闭值的影响,研究了在不同脉冲宽度激光作用下多光子离化和雪崩离化两种损伤机制的竞争.结果表明,在以平均电子能量不变为特征的雪崩电离的建立期间,光电离速度影响初始电子的浓度,从而影响雪崩电离和光电离之间的竞争.激光脉冲的宽度越大,雪崩电离对电子发展的贡献越大,而多光子离化的贡献越小.  相似文献   

19.
Laser-induced breakdown spectroscopy (LIBS) is investigated as a technique for real-time monitoring of hydrogen gas. Two methodologies were examined: The use of a 100 mJ laser pulse to create a laser-induced breakdown directly in a sample gas stream, and the use of a 55 mJ laser pulse to create a laser-induced plasma on a solid substrate surface, with the expanding plasma sampling the gas stream. Various metals were analyzed as candidate substrate surfaces, including aluminum, copper, molybdenum, stainless steel, titanium, and tungsten. Stainless steel was selected, and a detailed analysis of hydrogen detection in binary mixtures of nitrogen and hydrogen at atmospheric pressure was performed. Both the gaseous plasma and the plasma initiated on the stainless steel surface generated comparable hydrogen emission signals, using the 656.28 Halpha emission line, and exhibited excellent signal linearity. The limit of detection is about 20 ppm (mass) as determined for both methodologies, with the solid-initiated plasma yielding a slightly better value. Overall, LIBS is concluded to be a viable candidate for hydrogen sensing, offering a combination of high sensitivity with a technique that is well suited to implementation in field environments.  相似文献   

20.
Dot patterns of refractive indices were formed by the laser pulse irradiation on the tellurite glasses. The ternary tellurite glasses of TeO2-Na2O-Al2O3, TeO2-Na2O-GeO2 and TeO2-Na2O-TiO2 doped with 2 mol% of CoO were irradiated by a femtosecond pulse laser beam (800 nm) or by a green light beam (532 nm) from a second harmonic generator of a Q switch pulse YAG laser. The refractive index map of the glass was composed with an He-Ne laser beam by an scanning ellipsometric technique at a resolution of 100 m × 50 m, indicating that the spots possessing refractive index lower by about 0.05–0.38 than the surroundings were formed at the region irradiated by the laser beam. The irradiation of the femtosecond laser beam generated the dot patterns roughly equivalent to the beam size. The change of refractive index could be tunable by adjusting laser power, suggesting that the process could be applied to optical recording.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号